Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

823 results about "Multi rate" patented technology

Surgical Instrument Having A Multiple Rate Directional Switching Mechanism

A surgical instrument having a remotely controllable user interface, and a firing drive configured to generate a rotary firing motion upon a first actuation of the remotely controllable user interface and a rotary refraction motion upon an other actuation of remotely controllable user interface. The instrument includes a first drive member, wherein remotely controllable user interface is selectively engageable with the first drive member, and a second drive member, wherein the remotely controllable user interface is selectively engageable with the second drive member. The instrument also includes an elongate shaft assembly operably engaged with the first drive member and the second drive member. The instrument further includes an end effector coupled to the elongate shaft assembly. The end effector includes an elongate channel configured to operably support a staple cartridge therein, and an anvil movably coupled to the elongate channel. The end effector also includes a cutting member operably supported within the elongate channel, wherein the cutting member is operably engaged with the elongate shaft assembly. The instrument is such that when the remotely controllable user interface operates the first drive member, the first actuation advances the cutting member a first distance, wherein, when the remotely controllable user interface operates the second drive member, the other actuation retracts the cutting member a second distance, and wherein the second distance is greater than the first distance.
Owner:CILAG GMBH INT

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7295878B1Assures safe and reliable operation of systemFirmly connectedImplantable neurostimulatorsLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Method for dynamically optimizing bandwidth allocation in variable bitrate (multi-rate) conferences

Method for dynamically optimizing bandwidth allocation in a variable bitrate conference environment. Conference means with two or more outputs are provided, where each one can output data at different rates, in order to support two or more endpoints which may have different media rates. Two or more endpoints are connected to these conference means for participating in the conference. Whenever more than one video rate is used by participants during the conference, each set of output rates is selected from all possible combinations of output rates in the conference means, wherein the lowest output rate in each selected set is the entry rate of the endpoint joining the conference at the lowest rate. A Quality Drop Coefficient (QDC) for each endpoint that joins the conference is determined for each selected set, wherein the QDC is computed according to the endpoint entry rate and the highest rate, among the output rates of each selected set, that is lower or equal to said endpoints' entry rate. A Quality Drop Value (QDV) is calculated for each of the selected sets, wherein, preferably, the set of output rates with the lowest QDV is determined as the optimal video rate set to select. The video rate of all the endpoints having a video rate above the highest optimal video rate is reduced to the highest optimal video rate, if required, and the video rate of other endpoints having video rate between two consecutive levels of optimal video rates is reduced to the lowest level among said levels. Whenever a change occurs in either the amount of participating endpoints in the conference or in the declared bit rate capability of the participating endpoints, the video rates of all the outputs are recalculated.
Owner:AVAYA INC

Compensator for removing nonlinear distortion

The present invention is a computationally-efficient compensator for removing nonlinear distortion. The compensator operates in a digital post-compensation configuration for linearization of devices or systems such as analog-to-digital converters and RF receiver electronics. The compensator also operates in a digital pre-compensation configuration for linearization of devices or systems such as digital-to-analog converters, RF power amplifiers, and RF transmitter electronics. The compensator effectively removes nonlinear distortion in these systems in a computationally efficient hardware or software implementation by using one or more factored multi-rate Volterra filters. Volterra filters are efficiently factored into parallel FIR filters and only the filters with energy above a prescribed threshold are actually implemented, which significantly reduces the complexity while still providing accurate results. For extremely wideband applications, the multi-rate Volterra filters are implemented in a demultiplexed polyphase configuration which performs the filtering in parallel at a significantly reduced data rate. The compensator is calibrated with an algorithm that iteratively subtracts an error signal to converge to an effective compensation signal. The algorithm is repeated for a multiplicity of calibration signals, and the results are used with harmonic probing to accurately estimate the Volterra filter kernels. The compensator improves linearization processing performance while significantly reducing the computational complexity compared to a traditional nonlinear compensator.
Owner:LINEARITY LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products