Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

120392 results about "Battery cell" patented technology

Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment

An AED being powered by 120 / 240 VAC electrical power alone, being powered by external DC power alone, or any in combination with or without internal-integral battery power, and further an AED access service business method for sales of access to AEDs. The inventive AED, in addition to the defibrillator circuitry comprises a long, tangle free power access cord to be plugged into an external source of AC or DC power and optionally, additional sets of body surface and alternative electrodes positioned in the esophagus and / or heart. The AED has additional advanced capabilities including the ability to deliver rapid sequential shocks through one or more sets of patient electrodes, and the optional mode of shock delivery whereby the shock is delayed while the AED continues to analyze the patients ECG waveform and delays the defibrillation shock or sequence of shocks until the ECG analysis indicates conditions are optimum for successful defibrillation.
Owner:RAMSEY MAYNARD III

Method for utilizing temperature to determine a battery state

A method for determining the state of a battery, or battery pack, that is independent of the type of battery technology under test. The method employs one or more charging and discharging cycles, and measures one or more parameters of battery voltage, temperature, charging time, and charging cycle counts to produce a test value that is compared to empirical data. Based on the comparison, the state is determined, for example, on a pass / fail basis. The method may be embodied as instructions stored in memory and implemented by means of a microprocessor coupled to the memory. In another embodiment, the empirical data is stored within another memory located internal to the battery pack under test.
Owner:LINVATEC

Shock proof structure of battery pack for receiving battery cell

A shock proof structure of a battery pack for receiving a battery cell is formed in an electrical tool. The battery pack includes a base having a space for receiving the battery cell and a lid for opening or closing the space. The space has a plurality of first buckling portions separated by a gap disposed at a bottom side thereof. A plurality of second buckling portions with shock absorbance is formed at an inner sidewall of the lid. The plate sets include two plates separated by a gap are symmetrically positioned. The plates of each plate set have a second buckling portion with a stretching gap formed in between. The second buckling portion is positioned at the opposite end of the first buckling portion to provide the battery cell to be steadily buckled between the first and the second buckling portions.
Owner:DE POAN PNEUMATIC

Electric surgical instrument with optimized power supply and drive

A surgical instrument includes a surgical end effector having at least one actuation assembly to effect a surgical procedure when actuated, an electric motor operationally connected to the end effector to operate the at least one actuation assembly, and a power supply electrically connected to the motor and selectively powering the motor to actuate the actuation assembly. The power supply has a battery cell with a critical current rate and, when activated to power the motor and actuate the actuation assembly, operates the cell at a super-critical current rate or at an average current rate above the critical current rate. The power supply selectively powers the motor to actuate the assembly less than 16 times during a clinical life of at least one of the end effector, the motor, and the power supply. When actuated, the assembly operates only between 0.5 seconds and 16 seconds in duration.
Owner:CILAG GMBH INT

Battery management system for control of lithium power cells

An intelligent rechargeable battery pack having a battery management system for monitoring and controlling the charging and discharging of the battery pack is described. The battery management system includes primary and secondary protection circuits for monitoring the charging and discharging of the battery. Individual battery cells forming the battery pack are connected by a main bus to a connector for connection to a battery charger or a device to be powered, and the main bus may be interrupted by a switch controlled by the battery management system to prevent damage to the battery during charging or discharging of the battery.
Owner:ZOLL CIRCULATION

Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof

ActiveUS20070109121A1Facilitates transmission of wireless signalFacilitates local and remote distributionBatteries circuit arrangementsFrequency-division multiplex detailsElectrical batteryThe Internet
A system and device for harvesting various frequencies and polarizations of ambient radio frequency (RF) electromagnetic (EM) energy for making a passive sensor (tag) into an autonomous passive sensor (tag) adapted to collect and store data with time-stamping and some primitive computation when necessary even when an interrogating radio frequency identification (RFID) reader is not present (not transmitting). A specific source of ambient RF EM energy may include wireless fidelity (WiFi) and / or cellular telephone base stations. The system and device may also allow for the recharging of energy storage units in active and battery assisted passive (BAP) devices. The system could be a “smart building” that uses passive sensors with RF EM energy harvesting capability to sense environmental variables, security breaches, as well as information from “smart appliances” that can be used for a variety of controls and can be accessed locally or remotely over the Internet or cellular networks.
Owner:COHEN MARC HARRY

Electrical surgical instrument with optimized power supply and drive

A surgical instrument includes an end effector having an actuator effecting a surgical procedure when actuated, an electric motor operating the actuator, and a power supply actuating the actuator when power is supplied to the motor. The power supply has a battery cell with a given rated power for an operating period of over 15 seconds and for a total aggregate operating time of over 300 seconds. The motor and power supply are configured to utilize the battery cell at a power greater than the given rated power. The motor characteristics are selected to utilize the battery cell for periods of operation of less than 16 seconds and for a total aggregate operating time of less than 300 seconds. A one-handed handle contains all of the power supply, at least part of an anvil control assembly, and at least part of an electrically-powered stapler / cutter control assembly.
Owner:CILAG GMBH INTERNATIONAL

Nano graphene reinforced nanocomposite particles for lithium battery electrodes

A solid nanocomposite particle composition for lithium metal or lithium ion battery electrode applications. The composition comprises: (A) an electrode active material in a form of fine particles, rods, wires, fibers, or tubes with a dimension smaller than 1 μm; (B) nano graphene platelets (NGPs); and (C) a protective matrix material reinforced by the NGPs; wherein the graphene platelets and the electrode active material are dispersed in the matrix material and the NGPs occupy a weight fraction wg of 1% to 90% of the total nanocomposite weight, the electrode active material occupies a weight fraction wa of 1% to 90% of the total nanocomposite weight, and the matrix material occupies a weight fraction wm of at least 2% of the total nanocomposite weight with wg+wa+wm=1. For a lithium ion battery anode application, the matrix material is preferably amorphous carbon, polymeric carbon, or meso-phase carbon. Such a solid nanocomposite composition provides a high anode capacity and good cycling stability. For a cathode application, the resulting lithium metal or lithium ion battery exhibits an exceptionally high cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Nano graphene platelet-based composite anode compositions for lithium ion batteries

The present invention provides a nano-scaled graphene platelet-based composite material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing lithium ions; and (b) a plurality of nano-scaled graphene platelets (NGPs), wherein a platelet comprises a graphene sheet or a stack of graphene sheets having a platelet thickness less than 100 nm; wherein at least one of the particles or coating is physically attached or chemically bonded to at least one of the graphene platelets and the amount of platelets is in the range of 2% to 90% by weight and the amount of particles or coating in the range of 98% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Autonomous, ambulatory analyte monitor or drug delivery device

ActiveUS7004928B2Improve capillary forceMinimize coagulationAutomatic syringesMicroneedlesBiomedical engineeringElectronic equipment
The invention relates to analyte monitoring / drug (pharmaceutical agent) delivery device. The invention is suited for monitoring various blood constituents such as glucose. The device has a housing that at least partially encloses a plurality of microneedles disposed on a carrier and an electronics portion. Each microneedle is in fluid communication with a corresponding microchannel. Each microneedle is individually addressable. That is, each microneedle can be extended and retracted individually via an actuator. The electronics portion includes a processor and associated circuitry (e.g., memory, supporting electronics and the like), a motor or the like, a sensor, a power supply (e.g., battery) and optionally an interface. In general, the processor controls the operation of the device and is data communication with the actuator, motor, sensor and interface. The invention provides for autonomous operation, that is, without intervention of the user. The invention can optionally provide for calibration without intervention of the user. The invention can also provide for semi-continuous monitoring for day and night time. The invention can provide for up to four, or more, weeks of operation. The invention can provide for a device that is relative small in size, and therefore unobtrusive. The invention can also provide for device with remote control and interactive electronics. The invention may be also used for the delivery of various pharmaceutical agents including high potency drugs to minimize patient intervention and minimize discomfort.
Owner:INTUITY MEDICAL INC

Method for Producing Virtual Ge Substrates for III/V-Integration on Si(001)

Relaxed germanium buffer layers can be grown economically on misoriented silicon wafers by low-energy plasma-enhanced chemical vapor deposition, in conjunction with thermal annealing and / or patterning, the buffer layers can serve as high-quality virtual substrates for the growth of crack-free GaAs layers suitable for high-efficiency solar cells, lasers and field effect transistors.
Owner:DICHROIC CELL

Automatic skin puncturing system

An automatic skin puncturing system that was operable with one hand for allowing individuals with the use of only a single hand to take the blood samples needed to monitor their blood glucose levels. The automatic skin puncturing system includes a housing assembly, a power connecting jack, a battery holder, an indexable, motor driven turntable, an index switch, a reed switch, a lancet lifting assembly, a disposable lancet carousel cartridge, and an electronic, micro-processor controlled circuit.
Owner:KELLY HELEN V

Conductive nanocomposite-based electrodes for lithium batteries

This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 μm (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode. The battery featuring such an anode or cathode exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Back-contact photovoltaic cells

A photovoltaic cell comprising a wafer comprising a semiconductor material of a first conductivity type, the wafer comprising a first light receiving surface and a second surface opposite the first surface; a first passivation layer positioned over the first surface of the wafer; a first electrical contact positioned over the second surface of the wafer; a second electrical contact positioned over the second surface of the wafer and separated electrically from the first electrical contact; a second passivation layer positioned over the second surface of the wafer in the region on the wafer that is at least between the first electrical contact and the second surface of the wafer; and a layer comprising a semiconductor material of a conductivity opposite the conductivity of the wafer and positioned in the region between the second passivation layer and the first contact.
Owner:BP CORP NORTH AMERICA INC

Portable solar generator

A portable PV modular solar generator. A plurality of wheels are attached to the bottom of a rechargeable battery container. At least one rechargeable battery is contained inside the rechargeable battery container. A power conditioning panel is connected to the rechargeable battery container. At least one photovoltaic panel is pivotally connected. In a preferred embodiment, the rechargeable battery container is a waterproof battery enclosure having a knife switch connection. A mast having a rotation bar is supported by the waterproof battery enclosure. At least one solar panel support brace for supporting the photovoltaic panel is attached to the rotation bar. The power conditioning panel is waterproof, is attached to the mast and has a door. When the door is opened, at least one safety switch is opened, breaking an electric circuit. The waterproof power conditioning panel has a charge controller and an inverter. The charge controller is electrically connected to at least one rechargeable battery and at least one photovoltaic panel, and is capable or receiving auxiliary power inputs.
Owner:BENN WILLIAM M +1

Composite solid electrolyte for protection of active metal anodes

ActiveUS20070172739A1Eliminate through-porosityHigh metal ion conductivityCell electrodesPrimary cellsPorosityTectorial membrane
A composite solid electrolyte include a monolithic solid electrolyte base component that is a continuous matrix of an inorganic active metal ion conductor and a filler component used to eliminate through porosity in the solid electrolyte. In this way a solid electrolyte produced by any process that yields residual through porosity can be modified by the incorporation of a filler to form a substantially impervious composite solid electrolyte and eliminate through porosity in the base component. Methods of making the composites is also disclosed. The composites are generally useful in electrochemical cell structures such as battery cells and in particular protected active metal anodes, particularly lithium anodes, that are protected with a protective membrane architecture incorporating the composite solid electrolyte. The protective architecture prevents the active metal of the anode from deleterious reaction with the environment on the other (cathode) side of the architecture, which may include aqueous, air and organic liquid electrolytes and / or electrochemically active materials.
Owner:POLYPLUS BATTERY CO INC

Electric charger and power supply device for portable terminal

InactiveUS7183748B1Prevents wasteful power consumptionCancel a battery cutoff operationElectric powerArrangements for several simultaneous batteriesCharge controlBattery cell
A charging control unit decides the number of battery cells on the basis of an output voltage of a battery pack, and an output voltage of a charging circuit is determined in accordance with the decided number of battery cells. Even though supply of an external power supply is detected, when a battery connection is not detected, the power supply circuit of the charging control unit is set in a stop state. In addition, when disconnection of the battery is detected, a canceling voltage for canceling a cutoff state caused by overdischarging of the battery is output. In a power supply device for a portable terminal, a capacitor electrically charged by an output voltage of main DC / DC converter is connected as an auxiliary power supply of a backup DC / DC converter to make exchange of the auxiliary battery unnecessary.
Owner:FUJITSU FRONTECH LTD

Solution-based fabrication of photovoltaic cell

An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
Owner:AERIS CAPITAL SUSTAINABLE IP

Contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell

ActiveUS20090033280A1Effectively transmits induced electromotive forceReduce energy wasteNear-field transmissionTransformersCoil arrayRechargeable cell
The present invention relates to a contact-less power supply magnetically coupled to a battery device having a receiving coil therein, for contact-less charging the battery device, the contact-less power supply having a sending coil array including a plurality of sending coils for inducing a charging power to the receiving coil; and a driving means for detecting a sending coil magnetically coupled to the receiving coil and selectively driving only the detected sending coil.
Owner:LS CABLE & SYST LTD

Magnetic holder for cell phones and the like

A magnetic holder for cell phones includes a cup formed of a ferromagnetic material or the like within which a magnet is supported. The rear surface of the cup includes a double-sided adhesive pad to provide attachment of the cup to a vehicle dashboard surface or the like. The cup concentrates the force of the magnet along the frontal edges thereof. A friction ring encircles the frontal edges of the cup to provide enhanced retention of a cell phone secured to the cup by magnetic attraction between the internal magnet and the cell phone battery or other metallic portion thereof. Alternate embodiments are shown which provide different shapes of cup and magnet and which provide differing attachments such as suction cups or belt clips for retaining the magnetic holder. In a further alternate embodiment, the packaging provided for the cup holder is constructed to facilitate the multiple display of the a plurality of cup holders and packages in typical point of sale environment.
Owner:RED APPLE

Large-area magnetron sputtering chamber with individually controlled sputtering zones

The present invention generally provides an apparatus for processing a surface of a substrate in a physical vapor deposition (PVD) chamber that has a sputtering target that has separately biasable sections, regions or zones to improve the deposition uniformity. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one or more DC or RF power sources. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one power source and one or more resistive, capacitive and / or inductive elements. In one aspect, the processing chamber contains a multizone target assembly that has one or more ports that are adapted deliver a processing gas to the processing region of the PVD chamber. In one aspect, the processing chamber contains a multizone target assembly that has one or more magnetron assemblies positioned adjacent to one or more of the target sections.
Owner:APPLIED MATERIALS INC

Mesoporous network electrode for electrochemical cell

A high kinetics rate electrochemical cell in which at least one of the electrodes is composed of a mesostructural electroactive material comprising nanoparticles forming a three-dimensional framework structure of mesoporous texture having a bicontinuous junction of large specific surface area with the electrolyte. A low temperature method of preparation of the electrodes employs a high-speed deposition of the electrically active material in the form of a thin film. The application of said electrodes in high power lithium ion insertion batteries, photovoltaic cells, supercapacitors and fast electrochromic devices is disclosed.
Owner:FRANCOIS SUGNAUX

Shaft mounted energy harvesting for wireless sensor operation and data transmission

A device for monitoring a rotating shaft is provided. The device measures strain in the shaft and provides angular velocity and torque in the shaft. The device includes a sensor, sensor conditioning circuitry, a microprocessor, and a transmitter, all located on a rotating shaft. The device obtains power by harvesting mechanical energy of the rotating shaft itself. Coils are provided rotating with the shaft and permanent magnets are mounted adjacent the rotating shaft so electrical energy is induced in the coils as they rotate through the magnetic field of the permanent magnets. A battery or capacitor is connected to the coils for storing energy. A microprocessor is connected to the sensors, the storage device, and the transmitter for managing power consumption and for monitoring the amount of electrical energy stored in the storage device and for switchably connecting the storage device to the transmitter when the stored energy exceeds a threshold.
Owner:LORD CORP

Low bandgap, monolithic, multi-bandgap, optoelectronic devices

Low-bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Owner:ALLIANCE FOR SUSTAINABLE ENERGY

Tunable frangible battery pack system

A tunable frangible battery pack system for use in an electric vehicle is disclosed. The tunable frangible battery pack system includes a two piece clamshell housing. The system also includes a plurality of battery cells arranged within the housing and a collector plate secured to each piece of the housing. The system also includes a wire conductor arranged between each of the battery cells and collector plates to create a frangible disconnect system when the battery pack system and electric vehicle are exposed to a predetermined mechanical or thermal force or event.
Owner:TESLA INC

Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics

A method is disclosed for improving the performance of an energy storage system that incorporates a high density electrical energy storage device, such a battery or ultracapacitor. The method may be implemented in an energy storage system of a hybrid electric vehicle (HEV) as a computer control algorithm for controlling the discharge power limits of an energy storage device, such as a battery. The method allows the discharge power limits of the battery to be temporarily expanded under vehicle launch conditions where the power demands are high, thereby making additional stored energy available for use under such conditions by improving battery utilization and providing more consistent vehicle launch characteristics than would otherwise be available.
Owner:GM GLOBAL TECH OPERATIONS LLC

Real-time operating parameter selection in a vehicular transmission

Preferred operating points for a vehicle powertrain including an engine and a transmission are determined in accordance with a comprehensive operational mapping of input and output conditions and corresponding aggregate system losses corresponding to engine and transmission losses. In a hybrid transmission application, additional losses from motors and batteries are aggregated into the system losses and battery constraints are considered in determining preferred operating points. Preferred operating points are provided in one or more sets of minimized data for on-vehicle implementation.
Owner:GM GLOBAL TECH OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products