Patents
Literature

1245results about How to "Improve conductivity" patented technology

Graphene-cladding manganese dioxide combination electrode material and method for producing same

A graphene-cladding manganese dioxide combination electrode material and a method for producing the same, belonging to the technical field of electronic functional materials, the graphene-cladding manganese dioxide combination electrode material comprises nano manganese dioxide particles and graphene cladded with manganese dioxide particles, wherein the mass ratio of graphene and the nano manganese dioxide particles is 1:(1.25-10). The method comprises the following steps: preparing the nano manganese dioxide particles and graphite oxide respectively, and mixing and ultrasonically dispersing to obtain the graphene-cladding manganese dioxide dispersing agent, finally, reducing the graphite oxide to obtain the graphene-cladding manganese dioxide combination electrode material. The graphene is used to clad the manganese dioxide, so the electrical conductivity and cycling stability of the electrode material parts can be improved; and meanwhile, the existence of the manganese dioxide particles also effectively prevents the graphene from reunion, so the specific capacity of the electrode material of a supercapacitor is obviously increased. The method has a simple technology, reaction products are easy to control, the purity is high, and the produced combination electrode material is suitable for producing an electrode plate of the supercapacitor.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Spherical silicon-oxygen-carbon negative electrode composite material and preparation method and application thereof

The invention discloses a spherical silicon-oxygen-carbon negative electrode composite material, which is of a three-layer structure comprising an inner layer, an intermediate layer and an outer layer, wherein the inner layer is an SiOx/graphite substrate; the intermediate layer is an amorphous carbon coating layer; the outer layer is a carbon nanotube coating layer; the mass of the inner layer SiOx/graphite substrate accounts for 80%-90% of total mass of the spherical silicon-oxygen-carbon negative electrode composite material; the mass of the intermediate layer amorphous carbon accounts for 5%-10% of total mass of the spherical silicon-oxygen-carbon negative electrode composite material; and the outer layer carbon nanotube accounts for 5%-10% of total mass of the spherical silicon-oxygen-carbon negative electrode composite material. The grain diameter of the adopted SiOx substrate is smaller than 5 microns; the grain diameter is relatively small; intercalation and deintercalation of active substances are facilitated; higher specific capacity can be obtained; meanwhile, a dispersing agent is added when an SiOx sample is ground; and condition that the SiOx with a relatively small grain diameter is agglomerated in quantity to affect the performance is prevented.
Owner:ZHONGTIAN ENERGY STORAGE TECH

Nitrogen-doped graphene-ferronickel hydrotalcite difunctional oxygen catalyst and preparation method and application thereof

The invention relates to a nitrogen-doped graphene-ferronickel hydrotalcite non-noble metal difunctional oxygen catalyst and a preparation method thereof and electrocatalysis application of the oxygen catalyst in an alkaline medium to an oxygen evolution reaction and an oxygen reduction reaction. According to the catalyst, a micelle is taken as a template, ferronickel hydrotalcite is assembled on graphene oxide under the hydrothermal condition to form a spherical porous compound, the graphene oxide is reduced and doped with a nitrogen carbide nanosheet simultaneously under the hydrothermal condition, and then the nitrogen-doped graphene-ferronickel hydrotalcite oxygen catalyst is obtained. The method comprises the steps that the graphene oxide and metal salt are firstly dispersed into the micelle, the graphene oxide-ferronickel hydrotalcite compound is obtained through hydro-thermal synthesis under the alkaline condition, the product is doped with the nitrogen carbide nanosheet under the hydrothermal condition, and then the oxygen catalyst is obtained. The oxygen catalyst has the catalytic activity both on oxygen evolution and oxygen reduction under the alkaline condition and is high in stability and methyl alcohol tolerance, low in used raw material cost, simple in preparation method and convenient for scale production.
Owner:湛江市菱霸润滑油有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products