Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

511results about How to "Good step coverage" patented technology

Semiconductor Device and Method for Manufacturing the Same

A manufacturing method of an active matrix light emitting device in which the active matrix light emitting device can be manufactured in a shorter time with high yield at low cost compared with conventional ones will be provided. It is a feature of the present invention that a layered structure is employed for a metal electrode which is formed in contact with or is electrically connected to a semiconductor layer of each TFT arranged in a pixel area of an active matrix light emitting device. Further, the metal electrode is partially etched and used as a first electrode of a light emitting element. A buffer layer, a layer containing an organic compound, and a second electrode layer are stacked over the first electrode.
Owner:SEMICON ENERGY LAB CO LTD

Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor

A method of forming a metal layer having excellent thermal and oxidation resistant characteristics using atomic layer deposition is provided. The metal layer includes a reactive metal (A), an element (B) for the amorphous combination between the reactive metal (A) and nitrogen (N), and nitrogen (N). The reactive metal (A) may be titanium (Ti), tantalum (Ta), tungsten (W), zirconium (Zr), hafnium (Hf), molybdenum (Mo) or niobium (Nb). The amorphous combination element (B) may be aluminum (Al), silicon (Si) or boron (B). The metal layer is formed by alternately injecting pulsed source gases for the elements (A, B and N) into a chamber according to atomic layer deposition to thereby alternately stack atomic layers. Accordingly, the composition ratio of a nitrogen compound (A-B-N) of the metal layer can be desirably adjusted just by appropriately determining the number of injection pulses of each source gas. According to the composition ratio, a desirable electrical conductivity and resistance of the metal layer can be accurately obtained. The atomic layers are individually deposited, thereby realizing excellent step coverage even in a complex and compact region. A metal layer formed by atomic layer deposition can be employed as a barrier metal layer, a lower electrode or an upper electrode in a semiconductor device.
Owner:SAMSUNG ELECTRONICS CO LTD

Atomic layer deposition using metal amidinates

Metal films are deposited with uniform thickness and excellent step coverage. Copper metal films were deposited on heated substrates by the reaction of alternating doses of copper(I) NN′-diisopropylacetamidinate vapor and hydrogen gas. Cobalt metal films were deposited on heated substrates by the reaction of alternating doses of cobalt(II) bis(N,N′-diisopropylacetamidinate) vapor and hydrogen gas. Nitrides and oxides of these metals can be formed by replacing the hydrogen with ammonia or water vapor, respectively. The films have very uniform thickness and excellent step coverage in narrow holes. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method for Forming Dielectric Film Containing Si-C bonds by Atomic Layer Deposition Using Precursor Containing Si-C-Si bond

A method of forming a dielectric film having Si—C bonds on a semiconductor substrate by atomic layer deposition (ALD), includes: (i) adsorbing a precursor on a surface of a substrate; (ii) reacting the adsorbed precursor and a reactant gas on the surface; and (iii) repeating steps (i) and (ii) to form a dielectric film having at least Si—C bonds on the substrate. The precursor has a Si—C—Si bond in its molecule, and the reactant gas is oxygen-free and halogen-free and is constituted by at least a rare gas.
Owner:ASM IP HLDG BV

Method for Forming Insulation Film Using Non-Halide Precursor Having Four or More Silicons

A method of forming an insulation film on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: (i) adsorbing a non-excited non-halide precursor having four or more silicon atoms in its molecule onto a substrate placed in a reaction space; (ii) supplying an oxygen-free reactant to the reaction space without applying RF power so as to expose the precursor-adsorbed substrate to the reactant; and (iii) after step (ii), applying RF power to the reaction space while the oxygen-free reactant is supplied in the reaction space; and (iv) repeating steps (i) to (iii) as a cycle, thereby depositing an insulation film on the substrate.
Owner:ASM IP HLDG BV

Method of manufacturing a contact interconnection layer containing a metal and nitrogen by atomic layer deposition for deep sub-micron semiconductor technology

An atomic layer deposition method is used to deposit a TiN or TiSiN film having a thickness of about 50 nm or less on a substrat. A titanium precursor which is tetrakis(dimethylamido)titanium (TDMAT), tetrakis(diethylamido)titanium (TDEAT), or Ti{OCH(CH3)2}4 avoids halide contamination from a titanium halide precursor and is safer to handle than a titanium nitrate. After a monolayer of the titanium precursor is deposited on a substrate, a nitrogen containing reactant is introduced to form a TiN monolayer which is followed by a second purge. For TiSiN, a silicon source gas is fed into the process chamber after the TiN monolayer formation. The process is repeated several times to produce a composite layer comprised of a plurality of monolayers that fills a contact hole. The ALD method is cost effective and affords an interconnect with lower impurity levels and better step coverage than conventional PECVD or CVD processes.
Owner:TAIWAN SEMICON MFG CO LTD

Method for restoring porous surface of dielectric layer by UV light-assisted ALD

A method for restoring a porous surface of a dielectric layer formed on a substrate, includes: (i) providing in a reaction space a substrate on which a dielectric layer having a porous surface with terminal hydroxyl groups is formed as an outer layer; (ii) supplying gas of a Si—N compound containing a Si—N bond to the reaction space to chemisorb the Si—N compound onto the surface with the terminal hydroxyl groups; (iii) irradiating the Si—N compound-chemisorbed surface with a pulse of UV light in an oxidizing atmosphere to oxidize the surface and provide terminal hydroxyl groups to the surface; and (iv) repeating steps (ii) through (iii) to form a film on the porous surface of the dielectric layer for restoration.
Owner:ASM IP HLDG BV

Method for forming insulation film using non-halide precursor having four or more silicons

A method of forming an insulation film on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: (i) adsorbing a non-excited non-halide precursor having four or more silicon atoms in its molecule onto a substrate placed in a reaction space; (ii) supplying an oxygen-free reactant to the reaction space without applying RF power so as to expose the precursor-adsorbed substrate to the reactant; and (iii) after step (ii), applying RF power to the reaction space while the oxygen-free reactant is supplied in the reaction space; and (iv) repeating steps (i) to (iii) as a cycle, thereby depositing an insulation film on the substrate.
Owner:ASM IP HLDG BV

Methods of forming atomic layers of a material on a substrate by sequentially introducing precursors of the material

A thin film is formed using an atomic layer deposition process, by introducing a first reacting material including tantalum precursors and titanium precursors onto a substrate. A portion of the first reacting material is chemisorbed onto the substrate. Then, a second reacting material including oxygen is introduced onto the substrate. A portion of the second reacting material is also chemisorbed onto the substrate, to form an atomic layer of a solid material on the substrate. The solid material may be used as a dielectric layer of the capacitor and / or a gate dielectric layer of the transistor.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for forming multi-element thin film constituted by at least five elements by PEALD

A single-phase multi-element film constituted by at least four elements is formed on a substrate by plasma-enhanced atomic layer deposition (PEALD) conducting one or more process cycles. Each process cycle includes: (i) forming an integrated multi-element layer constituted by at least three elements on a substrate by PEALD using at least one precursor; and (ii) treating a surface of the integrated multi-element layer with a reactive oxygen, nitrogen, and / or carbon in the absence of a precursor for film formation so as to incorporate at least one new additional element selected from oxygen, nitrogen, and carbon into the integrated multi-element layer.
Owner:ASM IP HLDG BV

Plasma enhanced vapor phase deposition

A plasma enhanced vapor deposition apparatus includes a process chamber including a first space and a second space, a substrate holder provided in the first space and supporting a substrate, a plasma generating device combined to the process chamber and inducing plasma in the second space, an ion species screening member separating the first and second spaces from each other and filtering ion species to prevent the ion species from diffusing from the second space to the first space, a first gas supplier supplying a first process gas including a precursor gas into the first space, wherein the precursor gas includes atoms constituting a material layer deposited over the substrate, a second gas supplier supplying a second process gas including a reactive gas into the second space, and a gas discharger coupled to the process chamber and inducing a gas flow from the second space to the first space.
Owner:SK HYNIX INC +1

Method for forming sin or sicn film in trenches by peald

A method for forming a SiN or SiCN film in a trench on a substrate by plasma-enhanced atomic layer deposition (PEALD) conducts one or more process cycles, each process cycle including: (i) feeding a precursor in a pulse to a reaction space where the substrate is place, said precursor having a Si—N—Si bond in its skeletal structure to which at least one halogen group is attached; and (ii) applying RF power to the reaction space in the presence of a reactant gas and in the absence of any precursor to form a monolayer constituting a SiN or SiCN film.
Owner:ASM IP HLDG BV

Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same

A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A / cycle, is suitable for mass production.
Owner:SAMSUNG ELECTRONICS CO LTD

Atomic layer deposition using metal amidinates

Metal films are deposited with uniform thickness and excellent step coverage. Copper metal films were deposited on heated substrates by the reaction of alternating doses of copper(I) NN′-diispropylacetamidinate vapor and hydrogen gas. Cobalt metal films were deposited on heated substrates b the reaction of alternating doses of cobalt(II) bis(N,N′-diispropylacetamidinate) vapor and hydrogen gas. Nitrides and oxides of these metals can be formed by replacing the hydrogen with ammonia or water vapor, respectively. The films have very uniform thickness and excellent step coverage in narrow holes. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact and capacitor of semiconductor device using the same

A method of forming a metal nitride film using chemical vapor deposition (CVD), and a method of forming a metal contact and a semiconductor capacitor of a semiconductor device using the same, are provided. The method of forming a metal nitride film using chemical vapor deposition (CVD) in which a metal source and a nitrogen source are used as a precursor, includes the steps of inserting a semiconductor substrate into a deposition chamber, flowing the metal source into the deposition chamber, removing the metal source remaining in the deposition chamber by cutting off the inflow of the metal source and flowing a purge gas into the deposition chamber, cutting off the purge gas and flowing the nitrogen source into the deposition chamber to react with the metal source adsorbed on the semiconductor substrate, and removing the nitrogen source remaining in the deposition chamber by cutting off the inflow of the nitrogen source and flowing the purge gas into the deposition chamber. Accordingly, the metal nitride film having low resistivity and a low content of Cl even with excellent step coverage can be formed at a temperature of 500° C. or lower, and a semiconductor capacitor having excellent leakage current characteristics can be manufactured. Also, a deposition speed, approximately 20 A / cycle, is suitable for mass production.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for reducing tungsten film roughness and improving step coverage

A tungsten nucleation film is formed on a surface of a semiconductor substrate by alternatively providing to that surface, reducing gases and tungsten-containing gases. Each cycle of the method provides for one or more monolayers of the tungsten film. The film is conformal and has improved step coverage, even for a high aspect ratio contact hole.
Owner:NOVELLUS SYSTEMS

Method of growing electrical conductors

This invention relates to manufacturing of integrated circuits (ICs) and especially conductive layers suitable for use in an IC. According to the preferred method a metal oxide thin film is deposited on a substrate surface and reduced thereafter essentially into a metallic form with an organic reducing agent. The metal oxide is preferably deposited according to the principles of atomic layer deposition (ALD) using a metal source chemical and an oxygen source chemical. The reduction step is preferably carried out in an ALD reactor using one or more vaporized organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO and —COOH.
Owner:COLOR ACCESS +1

Pulsed nucleation deposition of tungsten layers

A method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.
Owner:APPLIED MATERIALS INC

Methods for growing low-resistivity tungsten film

Improved methods for depositing low resistivity tungsten films are provided. The methods involve depositing a tungsten nucleation layer on a substrate and then depositing a tungsten bulk layer over the tungsten nucleation layer to form the tungsten film. The methods provide precise control of the nucleation layer thickness and improved step coverage. According to various embodiments, the methods involve controlling thickness and / or improving step coverage by exposing the substrate to pulse nucleation layer (PNL) cycles at low temperature. Also in some embodiments, the methods may improve resistivity by using a high temperature PNL cycle of a boron-containing species and a tungsten-containing precursor to finish forming the tungsten nucleation layer.
Owner:NOVELLUS SYSTEMS

Method of growing electrical conductors

A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
Owner:ASM INTERNATIONAL

Deposition of tungsten nitride

Methods for depositing a tungsten nitride layer are described. The methods form a tungsten nitride layer using a carefully controlled deposition technique such as pulsed nucleation layer (PNL). Initially, a tungsten layer is formed on a substrate surface. The tungsten layer is then exposed to a nitriding agent to form a tungsten nitride layer. Methods of forming relatively thick layers of involve repeated cycles of contact with reducing agent, tungsten precursor and nitriding agent. In some cases, the cycle may also include contact with a dopant precursor such as phosphine or arsine.
Owner:NOVELLUS SYSTEMS

Method of forming silicon nitride film and method of manufacturing semiconductor device

A method of forming a silicon nitride film comprises: forming a silicon nitride film by applying first gas containing silicon and nitrogen and second gas containing nitrogen and hydrogen to catalyst heated in a reduced pressure atmosphere. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate having the semiconductor layer, a gate insulation film selectively provided on a principal surface of the semiconductor layer, and a gate electrode provided on the gate insulation film; and removing the silicon nitride film on the semiconductor layer and the gate electrode and leaving a sidewall comprising the silicon nitride film on a side surface of the gate insulation film and the gate electrode by etching the silicon nitride film in a direction generally normal to the principal surface of the semiconductor layer. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate including a semiconductor layer; forming an interlayer insulation layer on the silicon nitride film; forming a layer having an opening on the interlayer insulation layer; and etching the interlayer insulation layer via the opening in a condition where an etching rate for the silicon nitride film is greater than an etching rate for the interlayer insulation layer.
Owner:ULVAC INC

Method for depositing thin tungsten film with low resistivity and robust micro-adhesion characteristics

Methods of forming low resistivity tungsten films with good uniformity and good adhesion to the underlying layer are provided. The methods involve forming a tungsten nucleation layer using a pulsed nucleation layer process at low temperature and then treating the deposited nucleation layer prior to depositing the bulk tungsten fill. The treatment operation lowers resistivity of the deposited tungsten film. In certain embodiments, the depositing the nucleation layer involves a boron-based chemistry in the absence of hydrogen. Also in certain embodiments, the treatment operations involve exposing the nucleation layer to alternating cycles of a reducing agent and a tungsten-containing precursor. The methods are useful for depositing films in high aspect ratio and / or narrow features. The films exhibit low resistivity at narrow line widths and excellent step coverage.
Owner:NOVELLUS SYSTEMS

Deposition of tungsten nitride

Methods for depositing a tungsten nitride layer are described. The methods form a tungsten nitride layer using a carefully controlled deposition technique such as pulsed nucleation layer (PNL). Initially, a tungsten layer is formed on a substrate surface. The tungsten layer is then exposed to a nitriding agent to form a tungsten nitride layer. Methods of forming relatively thick layers of involve repeated cycles of contact with reducing agent, tungsten precursor and nitriding agent. In some cases, the cycle may also include contact with a dopant precursor such as phosphine or arsine.
Owner:NOVELLUS SYSTEMS

Method for fabricating semiconductor device and forming interlayer dielectric film using high-density plasma

A method for fabricating a semiconductor device and forming an insulating film used therein, includes forming an isolation insulating film on a semiconductor wafer and forming gates, separated by gaps having a predetermined distance, on an active region. Next, a first interlayer dielectric film is deposited to a predetermined thickness on the semiconductor wafer having the gates, so that the gaps between the gates are not completely filled. Then, a sputtering etch is performed entirely on a surface of the first interlayer dielectric film. Thereafter, the first interlayer dielectric film is partially removed through isotropic etching. Next, a second interlayer dielectric film is deposited on the first interlayer dielectric film so that the gaps between the gates are completely filled. According to the above method, a gap between gate patterns can be completely filled without a void by performing sputtering etch on interlayer dielectric films formed on gate patterns, thereby enhancing the reliability of a semiconductor device.
Owner:SAMSUNG ELECTRONICS CO LTD

Process for producing metal thin films by ALD

The invention relates generally to processes for producing electrically conductive noble metal thin films on a substrate by atomic layer deposition. According to one embodiment of the invention a substrate with a surface is provided in a reaction chamber and a vaporised precursor of a noble metal is pulsed into the reaction chamber. By contacting the vaporised precursor with the surface of the substrate, no more than about a molecular layer of the metal precursor is formed on the substrate. In a next step, a pulse of molecular oxygen-containing gas is provided in the reaction chamber, where the oxygen reacts with the precursor on the substrate. Thus, high-quality metal thin films can be deposited by utilising reactions between the metal precursor and oxygen. In one embodiment, electrically conductive layers are deposited in structures that have high aspect ratio vias and trenches, local high elevation areas or other similar surface structures that make the surface rough.
Owner:ASM INTERNATIONAL

Method of forming oxide layer using atomic layer deposition method and method of forming capacitor of semiconductor device using the same

In a method of forming an oxide layer using an atomic layer deposition and a method of forming a capacitor of a semiconductor device using the same, a precursor including an amino functional group is introduced onto a substrate to chemisorb a portion of the precursor on the substrate. Then, the non-chemisorbed precursor is removed. Thereafter, an oxidant is introduced onto the substrate to chemically react the chemisorbed precursor with the oxidant to form an oxide layer on the substrate. A deposition rate is fast and an oxide layer having a good deposition characteristic may be obtained. Also, a thin oxide film having a good step coverage and a decreased pattern loading rate can be formed.
Owner:SAMSUNG ELECTRONICS CO LTD

Method of forming silicon nitride film and method of manufacturing semiconductor device

A method of forming a silicon nitride film comprises: forming a silicon nitride film by applying first gas containing silicon and nitrogen and second gas containing nitrogen and hydrogen to catalyst heated in a reduced pressure atmosphere. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate having the semiconductor layer, a gate insulation film selectively provided on a principal surface of the semiconductor layer, and a gate electrode provided on the gate insulation film; and removing the silicon nitride film on the semiconductor layer and the gate electrode and leaving a sidewall comprising the silicon nitride film on a side surface of the gate insulation film and the gate electrode by etching the silicon nitride film in a direction generally normal to the principal surface of the semiconductor layer. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate including a semiconductor layer; forming an interlayer insulation layer on the silicon nitride film; forming a layer having an opening on the interlayer insulation layer; and etching the interlayer insulation layer via the opening in a condition where an etching rate for the silicon nitride film is greater than an etching rate for the interlayer insulation layer.
Owner:ULVAC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products