Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

14549results about "Discharge tube luminescnet screens" patented technology

Organic electroluminescent display device and manufacturing method thereof

The present invention provides an organic EL display device having a planarizing layer, which is prevented from being distorted. The above organic EL display device has a planarizing layer, which retains 5% or less the oligomer used to form this layer.
Owner:CANON KK

Color el display and method for producing the same

One embodiment of the present invention is a color EL display characterized in that at least color filters, a thin film transistor circuit, an organic EL layer, and a common electrode are laminated in this order on a transparent substrate. Another embodiment of the invention is a method for producing a color EL display comprising the steps of forming color filters or a transparent substrate; forming a thin film transistor circuit; forming an organic EL layer; and forming a common electrode, wherein process temperatures of the steps of forming the thin film transistor circuit and subsequent steps are 200° C. or less.
Owner:TOPPAN PRINTING CO LTD

Organic light emitting display (OLED) and its method of fabrication

An Organic Light Emitting Display (OLED) and its method of fabrication includes: a transparent substrate; a photochromatic layer formed on a first surface of the transparent substrate; at least one transparent Thin Film Transistor (TFT) formed on a first surface of the transparent substrate, and an organic light emitting device formed on and electrically connected to the transparent TFT.
Owner:SAMSUNG DISPLAY CO LTD

Lighting device and lighting method

A lighting device comprising first and second groups of solid state light emitters, which emit light having dominant wavelength in ranges of from 430 nm to 480 nm and from 600 nm to 630 nm, respectively, and a first group of lumiphors which emit light having dominant wavelength in the range of from 555 nm to 585 nm. If current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Owner:IDEAL IND LIGHTING LLC

Organic electroluminescent element, illuminator, display and compound

An organic electroluminescent element comprising a light emission layer and a hole blocking layer adjacent to the light emission layer, wherein, (i) the light emission layer contains a compound having a specified partial structure and having a molecular weight of not more than 1700; and (ii) the hole blocking layer contains a derivative selected from the group consisting of a styryl derivative, a boron derivative and a carboline derivative.
Owner:KONICA MINOLTA INC

Aromatic amine derivative and electroluminescence device using the same

Provided are a novel aromatic amine derivative having a specific structure and an organic electroluminescence device in which an organic thin layer comprising a single layer or plural layers including a light emitting layer is interposed between a cathode and an anode, wherein at leas one layer of the above organic thin layer contains the aromatic amine derivative described above in the form of a single component or a mixed component. Thus, the organic electroluminescence device is less liable to be crystallized in molecules, improved in a yield in producing the organic electroluminescence device and extended in a lifetime.
Owner:IDEMITSU KOSAN CO LTD

Organometallic complex and organic light-emitting element using same

An organometallic complex and an organic light-emitting element containing the complex which has a very high efficiency, a high luminance, and durability. The organic light-emitting element has an anode, a cathode, and a layer including an organic compound sandwiched between the anode and cathode. The layer containing the organic compound includes at least one organometallic complex represented by General Formula [I] below.
Owner:CANON KK

Material for organic electroluminescent element and organic electroluminescent element employing the same

A material for organic electroluminescence devices for use as a host material in combination with at least one phosphorescent metal complex, which comprises a compound having a specific heterocyclic structure, is described. Also described is an organic electroluminescence device having an anode, a cathode and an organic thin film layer having one or more layers. The organic thin film layer is interposed between the anode and cathode and has a light emitting layer containing a host material in combination with at least one phosphorescent metal complex. At least one layer of the organic thin film layer contains the material for organic electroluminescence devices. The material for organic electroluminescence devices provides an organic electroluminescence device which has a high emitting efficiency, causes little pixel defects, is excellent in heat resistance, and show a long lifetime.
Owner:IDEMITSU KOSAN CO LTD

Aromatic amine derivatives and organic electroluminescent device using same

The present invention provides a novel aromatic amine derivative having a specific structure and an organic electroluminescence device in which an organic thin film layer comprising a single layer or plural layers including at least a light emitting layer is interposed between a cathode and an anode, wherein at least one layer in the above organic thin film layer, particularly a hole transporting layer contains the aromatic amine derivative described above in the form of a single component or a mixed component. Use of the aromatic amine derivative described above materialize an organic electroluminescence device which reduces a driving voltage and makes molecules less liable to be crystallized and which enhances a yield in producing the organic EL device and has a long lifetime.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescent device having an azatriphenylene derivative

Azatriphenylene derivatives and their use in the electron-transporting layer of an electroluminescent device that comprises an anode, a spaced-apart cathode, and at least one electron-transporting layer disposed between the spaced-apart anode and cathode. Such EL devices provide lower drive voltage, improved power efficiency, and longer operational lifetime.
Owner:GLOBAL OLED TECH

Organic electroluminescent device

An organic electroluminescence device (1) including: an anode (20) and a cathode (50), at least two organic emitting layers (30), (32) and (34) interposed between the anode and the cathode, and at least one intermediate connection layer (40) and (42) being provided between the organic emitting layers (30), (32) and (34), the intermediate connection layer (40) and (42) comprising an acceptor layer, a donor layer and an electron-transporting material layer being stacked in this order from the cathode (50), the electron-transporting material layer containing a non-complex compound with a nitrogen-containing heterocyclic structure.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescent device

An organic electroluminescent device including a pair of electrodes, and at least one organic layer including a luminescent layer between the pair of electrodes, in which the organic electroluminescent device includes at least one compound selected from the group consisting of the compounds represented by Formula (1), (2) and (3):
Owner:UDC IRELAND

Organometallic complex, organic EL element and organic EL display

An organic EL element includes an organometallic complex including a rhenium atom; one ligand which has a coordinated nitrogen atom and a coordinated oxygen atom, each coordinated with the rhenium atom, and has at least one π conjugation part; and the other ligand coordinated with the rhenium atom in such a way that the ligand saturates the coordination number of the rhenium atom and the charge of the whole organometallic complex is neutral.
Owner:FUJIFILM HLDG CORP +1

Luminescent compounds with carbene ligands

An organic light emitting device is provided. The device has an anode, a cathode and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound further comprising one or more carbene ligands coordinated to a metal center.
Owner:UNIV OF SOUTHERN CALIFORNIA

Carbene containing metal complexes as OLEDs

A process for preparing a compound having the formula L2IrL′ is provided. The process comprises: combining and L′ in the presence of an organic solvent to form a mixture, wherein L is a suitable carbene ligand precursor coordinated to Ir; and L′ is a bidentate ligand or two monodentate ligands, and L is different from L′; Also provided is a process for preparing a compound having the formula The process comprises: (a) combining L, a carbene ligand precursor, with an organic solvent; (b) maintaining the mixture of step (a) at a temperature from about 175° C. to less than the boiling point of the organic solvent in (a). A process for preparing a compound with the formula L3Ir is also provided. This process comprises combining and L in the presence of alcohol and a base to form a mixture, wherein L is a bidentate ligand that may form a five-membered chelate ring.
Owner:UNIVERSAL DISPLAY +1

Organic electroluminescent device

An organic electroluminescent device having a pair of electrodes and at least one organic layer interposed between the pair of electrodes, in which the at least one organic layer contains at least one compound represented by formula (I): wherein, Z1 and Z2 each independently represent a nitrogen-containing aromatic six-membered ring coordinated to the platinum through a nitrogen atom; Q1 represents a group of atoms necessary for forming, together with the —C—C—, a nitrogen-containing aromatic five-membered ring; L1 represents a single bond or a divalent linking group; and n is 0 or 1.
Owner:UDC IRELAND +1

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. In the organic electroluminescence device, the organic thin-film layer includes at least one emitting layer, and the at least one emitting layer includes at least one phosphorescent material and a host material represented by the following Formula (1).Ra—Ar1—Ar2—Rb   (1)In Formula (1):Ra and Rb each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring; andAr1 and Ar2 each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. The organic thin-film layer includes at least one emitting layer. The at least one emitting layer contains at least one phosphorescent material and a host material represented by the following formula (1).In the formula, Ar1, Ar2, Ar3, B1, B2, B3 and B4 each represent a substituted or unsubstituted benzene ring or a substituted or unsubstituted condensed aromatic hydrocarbon ring selected from a naphthalene ring, a chrysene ring, a fluoranthene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a triphenylene ring, a benzo[a]triphenylene ring, a benzochrysene ring, a benzo[b]fluoranthene ring and a picene ring. p is 0 or 1.
Owner:IDEMITSU KOSAN CO LTD

Luminous lamp having an ultraviolet filtering and explosion proof thin film

A luminous lamp having an ultraviolet filtering and explosion-proof thin film is disclosed. An outside of a lamp is coated by a transparent layer which comprises phosphor powder. Energy generated by the lamp is absorbed by the phosphor powder while the lamp is shining. The phosphor powder would release energy to shot brilliance, so as to provide auxiliary lighting after turning off the lamp. Additionally, the phosphor powder can absorb harmful ultraviolet and other harmful radiations with shorter wavelengths to be one part of the thin film for filtering harmful radiations. The harmful ultraviolet can be transformed by the phosphor powder into visible light to red shift radiations with short wavelengths; hence the harmful radiations with shorter wavelengths can be eliminated. The illumination of visible light can be further increased. The transparent layer can catch broken fragments of the outside of the lamp to decrease accidents when the lamp is broken.
Owner:NANOFORCE TECH CORP

Luminescence device and display apparatus

A luminescence device having a layer containing a metal coordination compound which has a partial structure MLm of formula (2) below and is preferably entirely represented by formula (3) below:MLmL'n (3),wherein M denotes a metal atom of Ir, Pt, Rh or Pd; represent mutually different bidentate ligands; m is 1 or 2 or 3; n is 0 or 1 or 2 with the proviso that m+n=2 or 3; the partial structure MLm is represented by formula (2) below (wherein B is an isoquinolyl group bonded to the metal M with its N and including a position-1 carbon atom bonded to a cyclic group A which includes the C bonded to the metal M), and the partial structure ML'n is represented by formula (4), (5) or (6) shown below. There is provided a luminescence device capable of high-efficiency luminescence and long-term high luminance and adapted to red luminescence.
Owner:CANON KK

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. The organic thin-film layer includes at least one emitting layer. The at least one emitting layer contains at least one phosphorescent material and a host material represented by the following formula (1).Ra-Ar1-Rb  (1)In the formula, Ar1, Ra and Rb each represent a substituted or unsubstituted benzene ring or a condensed aromatic hydrocarbon ring selected from a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted chrysene ring, a substituted or unsubstituted fluoranthene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted benzophenanthrene ring, a substituted or unsubstituted dibenzophenanthrene ring, a substituted or unsubstituted triphenylene ring, a substituted or unsubstituted benzo[a]triphenylene ring, a substituted or unsubstituted benzochrysene ring, a substituted or unsubstituted benzo[b]fluoranthene ring and a substituted or unsubstituted picene ring. Substituents for Ra and Rb are not aryl groups.
Owner:IDEMITSU KOSAN CO LTD

Platinum complex and light emitting device

Provision of a novel platinum complex which is useful as a material for a light-emitting device of good light emission characteristic and light emission efficiency, and a novel light-emitting material that may be utilized in various fields. A platinum complex represented by the following general formula (1): (in which two rings of ring A, ring B, ring C, and ring D represent nitrogen-containing heterocyclic rings which may have a substituent and the remaining two rings of them represent aryl rings or hetero aryl rings which may have a substituent, the ring A and the ring B, the ring A and the ring C or / and the ring B and the rind D may form condensed rings. Two of X1, X2, X3, and X4 represent nitrogen atoms coordination bonded to a platinum atom and the remaining two of them represent carbon atoms or nitrogen atoms. Q1, Q2, and Q3 each represents a bond, oxygen atom, sulfur atom or bivalent group, two of Z1, Z2, Z3, and Z4 represent coordination bonds, and the remaining two of them represent covalent bonds, oxygen atoms or sulfur atoms), and a light-emitting device containing the platinum complex.
Owner:TAKASAGO INTERNATIONAL CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products