Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

143 results about "Triphenylene" patented technology

In chemistry, the organic compound triphenylene is a flat polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings. Triphenylene can be isolated from coal tar. It is also made synthetically by synthesis and trimerization of benzyne. One molecule of triphenylene has delocalized 18-π-electron systems based on a planar structure. It has the molecular formula C₁₈H₁₂.

Organic electroluminescence device and material for organic electroluminescence device

An organic electroluminescence device includes: a cathode; an anode; and a single-layered or multilayered organic thin-film layer provided between the cathode and the anode. In the organic electroluminescence device, the organic thin-film layer includes at least one emitting layer, and the at least one emitting layer includes at least one phosphorescent material and a host material represented by the following Formula (1).Ra—Ar1—Ar2—Rb   (1)In Formula (1):Ra and Rb each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a phenanthrene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring; andAr1 and Ar2 each represent a substituted or non-substituted benzene ring or a substituted or non-substituted condensed aromatic hydrocarbon ring selected from a group consisting of a naphthalene ring, a chrysene ring, a fluoranthene ring, a triphenylene ring, a benzophenanthrene ring, a dibenzophenanthrene ring, a benzotriphenylene ring, a benzochrysene ring and a picene ring.
Owner:IDEMITSU KOSAN CO LTD

Nanometer organic microporous polymer and method for adsorbing heavy metal in drinking water

The invention belongs to the field of an organic microporous polymer, and particularly relates to a nanometer organic microporous polymer and a method for adsorbing heavy metal in drinking water. The nanometer organic microporous polymer provided by the invention has a structure shown as a formula (I) shown in description, and comprises a condensed polycyclic aromatic structure unit; the nanometer organic microporous polymer is prepared from triquinoyl octahydrate, 4,5-dichloro-1,2 phenylenediamine and 2,3,6,7,10,11 hexahydroxy triphenylene through reaction; the nanometer organic microporous polymer is fully organic aromatic framework solid capable of being highly recovered; no metal ions are contained; the synthesis does not need a transition metal catalyst; no halogen-containing by-products are generated; green and environment-friendly effects are achieved; a very important function is provided for the green and sustainable development technology. Experiments prove that the organic microporous polymer provided by the invention can fast adsorb heavy metal materials in the drinking water, so that the heavy metal content is lower than the drinkable limit; the nanometer organic microporous polymer scan be widely applied to drinking water purifications.
Owner:GUANGDONG UNIV OF TECH

1, 5, 9-trisubstituted coronene compound and synthesis method thereof

The present invention relates to a 1, 5, 9-trisubstituted coronene compound and a synthesis method thereof. The structural formula of the compound is shown in img file = 'dest _ path _ image 001. TIF 'wi = '109 'he = '108', wherein R represents H, C1-C18 alkyl, phenyl, 4-methylphenyl, 4-methoxy phenyl, benzyl, cyclohexyl, 4-trifluoromethylphenyl, thiophene, furan and the like. According to the technical scheme of the invention, the easily prepared 1, 5, 9-triamido triphenylene is subjected to diazotization and halogenation reaction to obtain the tri-halogenated triphenylene. After that, the tri-halogenated triphenylene is subjected to Sonogashira reaction with various alkynes to generate atriyne-triphenylene compounds. Finally, through the metal-catalyzed reaction and the cyclization reaction under the effect of an organic base, various 1, 5, 9-trisubstituted coronene compounds, novel in structure, can be obtained. According to the technical scheme of the invention, raw materials are easy for mass preparation. Meanwhile, the synthesis step is relatively short and the operation is convenient. The obtained trisubstituted coronene compound is good in thermal stability and chemical stability, and the trisubstituted coronene emits the relatively strong fluorescence within the range of 420-550 nm according to the fluorescence emission spectrum of the trisubstituted coronene compound. Therefore, the trisubstituted coronene is an excellent fluorescent material for preparing UV ultraviolet charge-coupled devices (UV-CCD) and organic light-emitting diodes (OLEDs), and has a wide application prospect in the field of electronic materials.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products