Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3805 results about "Sulfonyl" patented technology

A sulfonyl group can refer either to a functional group found primarily in sulfones or to a substituent obtained from a sulfonic acid by the removal of the hydroxyl group similarly to acyl groups. Sulfonyl groups can be written as having the general formula R−S(=O)₂−R′, where there are two double bonds between the sulfur and oxygen.

Organic electroluminescent materials and device made from such materials

Electroluminescent devices and materials including an electroluminescent organo-siloxane polymer. The main chain of the organo-siloxane polymer comprises an organic component that can be alkenyl, alkynyl, aralkyl, aryl, heteroaralkyl, and heteroaryl which can be substituted optionally with hydrogen, alkyl, aryl, heteroalkyl, heteroaralkyl, nitro, cyano, hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, halogen, dialkylamino, diarylamino, diaralkylamino, arylamino, alkylamino, arylalkylamino, carbonyloxy, carbonylalkoxy, carbonylalkyloxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxylcarbonyloxy, sulfonyl, or sulfonyloxy. The organic component includes at least two covalent bonds coupling the organic component to the main chain of the organo-siloxane polymer. Such devices provide superior performance and mechanical stability compared with conventional organic electroluminescent materials and devices made from such materials.
Owner:ORGANIC DISPLAY TECH

Useful precursors for organic electroluminescent materials and devices made from such materials

InactiveUS6165383ADesirable efficiencyDesirable weightSilicon organic compoundsLayered productsArylAnthracene
Precursor materials useful for making organic electroluminescent devices such as anthracene derivatives having the structure: R40-R43 and R44-R47 are selected independently from the group consisting of hydrogen, alkyl, aryl, heteroalkyl, heteroaralkyl, nitro, cyano, hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, halogen, dialkylamino, diarylamino, diaralkylamino, arylamino, alkylamino, arylalkylamino, carbonyloxy, carbonylalkoxy, carbonylalkyloxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxylcarbonyloxy, sulfonyl, sulfonyloxy. R48 and R49 are selected independently from the group consisting of trialkoxysilyl, dialkoxysilyl, trichlorosilyl, dichlorosilyl, heptachlorotrisiloxy, and pentachlorodisiloxy.
Owner:ORGANIC DISPLAY TECH

Pharmaceutical co-crystal compositions

A pharmaceutical composition comprising a co-crystal of an API and a co-crystal former; wherein the API has at least one functional group selected from ether, thioether, alcohol, thiol, aldehyde, ketone, thioketone, nitrate ester, phosphate ester, thiophosphate ester, ester, thioester, sulfate ester, carboxylic acid, phosphonic acid, phosphinic acid, sulfonic acid, amide, primary amine, secondary amine, ammonia, tertiary amine, sp2 amine, thiocyanate, cyanamide, oxime, nitrile diazo, organohalide, nitro, s-heterocyclic ring, thiophene, n-heterocyclic ring, pyrrole, o-heterocyclic ring, furan, epoxide, peroxide, hydroxamic acid, imidazole, pyridine and the co-crystal former has at least one functional group selected from amine, amide, pyridine, imidazole, indole, pyrrolidine, carbonyl, carboxyl, hydroxyl, phenol, sulfone, sulfonyl, mercapto and methyl thio, such that the API and co-crystal former are capable of co-crystallizing from a solution phase under crystallization conditions.
Owner:JOHNSON & JOHNSON CONSUMER COPANIES +2

2′-fluoronucleosides

A class of 2′-fluoro-nucleoside compounds are disclosed which are useful in the treatment of hepatitis B infection, hepatitis C infection, HIV and abnormal cellular proliferation, including tumors and cancer. The compounds have the general formulae: wherein[0001]Base is a purine or pyrimidine base;[0002]R1 is OH, H, OR3, N3, CN, halogen, including F, or CF3, lower alkyl, amino, loweralkylamino, di(lower)alkylamino, or alkoxy, and base refers to a purine or pyrimidine base;[0003]R2 is H, phosphate, including monophosphate, diphosphate, triphosphate, or a stabilized phosphate prodrug; acyl, or other pharmaceutically acceptable leaving group which when administered in vivo, is capable of providing a compound wherein R2 is H or phosphate; sulfonate ester including alkyl or arylalkyl sulfonyl including methanesulfonyl, benzyl, wherein the phenyl group is optionally substituted with one or more substituents as described in the definition of aryl given above, a lipid, an amino acid, peptide, or cholesterol; and[0004]R3 is acyl, alkyl, phosphate, or other pharmaceutically acceptable leaving group which when administered in vivo, is capable of being cleaved to the parent compound, or a pharmaceutically acceptable salt thereof.
Owner:EMORY UNIVERSITY

Carbon nanotube dispersion liquid and transparent conductive film using same

Disclosed is a carbon nanotube dispersion liquid which enables to easily form a transparent conductive film. Also disclosed is a transparent conductive film obtained by using such a carbon nanotube dispersion liquid. Specifically disclosed is a carbon nanotube dispersion liquid containing a carbon nanotube (A), a dispersing agent (B) composed of an organic compound containing one of a carboxyl group, epoxy group, amino group and sulfonyl group and having a boiling point of not less than 30˚C and not more than 150˚C, and a solvent (C). Also disclosed are a transparent conductive film containing a layer composed of a solid component of such a dispersion liquid, and a method for producing such a transparent conductive film.
Owner:KURARAY CO LTD

Pharmaceutical co-crystal compositions

A pharmaceutical composition comprising a co-crystal of an API and a co-crystal former; wherein the API has at least one functional group selected from ether, thioether, alcohol, thiol, aldehyde, ketone, thioketone, nitrate ester, phosphate ester, thiophosphate ester, ester, thioester, sulfate ester, carboxylic acid, phosphonic acid, phosphinic acid, sulfonic acid, amide, primary amine, secondary amine, ammonia, tertiary amine, sp2 amine, thiocyanate, cyanamide, oxime, nitrile diazo, organohalide, nitro, s-heterocyclic ring, thiophene, n-heterocyclic ring, pyrrole, o-heterocyclic ring, furan, epoxide, peroxide, hydroxamic acid, imidazole, pyridine and the co-crystal former has at least one functional group selected from amine, amide, pyridine, imidazole, indole, pyrrolidine, carbonyl, carboxyl, hydroxyl, phenol, sulfone, sulfonyl, mercapto and methyl thio, such that the API and co-crystal former are capable of co-crystallizing from a solution phase under crystallization conditions.
Owner:JOHNSON & JOHNSON CONSUMER COPANIES +2

Naphthalene isoxazoline invertebrate pest control agents

ActiveUS20100254959A1Treating and preventing and inhibiting and killing ectoBiocideOrganic chemistryPest controlNaphthalene
Disclosed are compounds of Formula 1,whereinR1 is halogen, C1-C2 haloalkyl or C1-C2 haloalkoxy;R2 is H, halogen or cyano;R3 is H, halogen or CF3;R4 is H, C2-C7 alkylcarbonyl or C2-C7 alkoxycarbonyl; andR5 is C1-C6 alkyl or C1-C6 haloalkyl, each substituted with one substituent independently selected from hydroxy, C1-C6 alkoxy, C1-C6 alkylthio, C1-C6 alkylsulfinyl, C1-C6 alkylsulfonyl, C2-C7 alkylaminocarbonyl, C3-C9 dialkylaminocarbonyl, C2-C7 haloalkylaminocarbonyl and C3-C9 halodialkylaminocarbonyl.Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
Owner:CORTEVA AGRISCIENCE LLC

N1-sulfonyl-5-fluoropyrimidinone derivatives

This present disclosure is related to the field of N1-sulfonyl-5-fluoropyrimidinones and their derivatives and to the use of these compounds as fungicides.
Owner:ADAMA MAKHTESHIM LTD

Polymer of containing fluorin, and application as material of ion exchange fiber

This invention discloses a fluorine-containing polymer and its application as ion exchange fiber material. The fluorine-containing polymer is a perfluoro resin containing sulfonylfluoride groups, and is shown in formula 1. The fluorine-containing polymer has ion exchange function, and is prepared by free radical copolymerization of perfluorosulfonyl vinyl ether, tetrafluoroethylene and hexafluoropropylene in the presence of dispersant, solvent and initiator. The dispersant / solvent is mixed solution of melamine derivative containing linear perfluoro hydrocarbon and water. The fluorine-containing polymer can be melt-spun into polymer fibers, which can be woven into fiber network that can be used as the reinforcing network material for ion exchange membranes and chlor-alkali ion membrane to reinforce and improve the ion exchange ability.
Owner:SHANDONG HUAXIA SHENZHOU NEW MATERIAL

Process for the preparation of pyrimidine derivatives

ActiveUS20050124639A1Easier and economical productionSimple reaction conditionsBiocideOrganic active ingredientsOxygenAldehyde
An improved process for the preparation of pyrimidine derivatives is provided comprising reacting a Wittig reagent of the general formula wherein R is an alkyl of from 1 to 10 carbon atoms, aryl or arylalkyl, R1 is a substituted or unsubstituted hydrocarbon group, R2 and R3 are the same or different and are hydrogen or a substituted or unsubstituted hydrocarbon group; Z is sulfur, oxygen, sulfonyl, or imino which may be substituted by formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, amino substituted by sulfonyl or alkylsulfonyl, and sulfonyl substituted by alkyl, amino or alkylamino and X is a halogen; with an aldehyde of the general formula wherein R4 is hydrogen, a lower alkyl or a cation capable of forming a non-toxic pharmaceutically acceptable salt and each R5 are the same or different and are hydrogen or a hydrolyzable protecting group, or each R5, together with the oxygen atom to which each is bonded, form a hydrolyzable cyclic protecting group, or each R5 is bonded to the same substituent which is bonded to each oxygen atom to form a hydrolyzable protecting group; in the presence of a base.
Owner:GLENMARK LIFE SCI LTD

Tetrazoyl oxime derivative and agrochemical containing the same as active ingredient

The present invention provides a tetrazoyloxime derivative which is less likely to cause chemical injury to useful plants and is also superior in chemical efficacy to a conventional hetero ring-substituted oxime derivative. A tetrazoyloxime derivative represented by the general formula (1): <CHEM> X represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a cyano group, a methanesulfonyl group, a nitro group, a trifluoromethyl group, or an aryl group; A represents a 1-alkyltetrazoyl-5-yl group or a 5-alkyltetrazoyl-1-yl group; and Het represents a pyridyl group having a substituent or a thiazoyl group having a substituent, and a plant disease controlling agent containing the same as an active ingredient are disclosed.
Owner:NIPPON SODA CO LTD

4-benzoyl pyrazole compound with herbicidal activity

The invention relates to a 4-benzoyl pyrazole compound with herbicidal activity. The structural formula of the 4-benzoyl pyrazole compound with the herbicidal activity is as shown in specifications, wherein R1 in the structural formula is selected from hydrogen, methyl or ethyl, R2 in the structural formula is selected from methylsulfonyl, methoxyl, methylthio, fluorine, chlorine or cyan, R3 in the structural formula is selected from hydrogen, methyl, methyl fluoride, difluoromethyl or trifluoromethyl, R in the structural formula is selected from a five-membered heteroaromatic ring, a six-membered heteroaromatic ring, C1-C6 alkoxyl, aromatic hetero-oxy, six-membered aryloxy or six-membered aromatic amino, and hydrogen in the C1-C6 alkoxyl can be replaced by fluorine or chlorine; m and n are selected from 0 or 1 and cannot be 1 at the same time. A series of relatively efficient weed killers and plant growth regulators with relative good selectivity and safety are synthesized by introducing a fluorine-containing functional group to a pyrazole 3-site and chemically modifying a pyrazole 5-site.
Owner:QINGDAO KINGAGROOT CHEM COMPOUNDS CO LTD

Process for preparing thermoplastic vulcanizates

InactiveUS6277916B1ElastomerAryl
This invention includes a process for forming a thermoplastic vulcanizate comprising: (a) admixing a C-H insertion curing agent with at least one elastomeric phase polymer to form a first admixture; (b) admixing at least one non-elastomeric polyolefin with the first admixture to form a second admixture; and (c) heating the second admixture to a temperature at least the decomposition temperature of the curing agent to crosslink the elastomeric phase while mixing the admixture to an extent sufficient to result in the formation of a thermoplastic material, hereinafter referred to as a thermoplastic vulcanizate, and optionally including an additional step (d) of shaping the resulting thermoplastic vulcanizate, especially by heating and foaming or molding the TPV. The C-H insertion curing agent is preferably selected from alkyl and aryl azides (R-N3), acyl azides (R-C(O)N3), azidoformates (R-O-C(O)-N3), sulfonyl azides (R-SO2-N3), phosphoryl azides ((RO)2-(PO)-N3), phosphinic azides (R2-P(O)-N3) and silyl azides (R3-Si-N3), with poly(sulfonyl azide) most preferred. Additionally, the invention includes a thermoplastic vulcanizate comprising a blend of: (1) an elastomeric phase crosslinked using a C-H insertion curing agent dispersed in; (2) at least one non-elastomeric thermoplastic polyolefin. The invention also includes a foamable composition comprising (1) an elastomeric phase crosslinked using a C-H insertion curing agent dispersed in; (2) at least one non-elastomeric thermoplastic polyolefin; and (3) from about 0.1 to about 25 percent by weight based on the combined weight of components (1) and (2) of at least one foaming agent as well as a fabricated part, cable jacket, cable insulation, or foam comprising the thermoplastic vulcanizate or the invention or resulting from the process of the invention.
Owner:THE DOW CHEM CO

Blocked mercaptosilane coupling agents for filled rubbers

Disclosed herein is a blocked mercaptosilane selected from the group consisting of[[(ROC(═O))p—(G)j]k—Y—S]r—G—(SiX3)s; and  (1)[(X3Si)q—G]a—[Y—[S—G—SiX3]b]c  (2)whereinY is a polyvalent species (Q)zA(═E) selected from the group consisting of —C(═NR)—; —SC(═NR)—; —SC(═O)—; —OC(═O)—; —S(═O)—; —S(═O)2—; —OS(═O)2—; (—NR)S(═O)2—; —SS(═O)—; —OS(═O)—; (—NR)S(═O)—; —SS(═O)2—; (—S)2P(═O)—; —(—S)P(═O)—; —P(═O)(—)2; (—S)2P(═S)—; —(—S)P(═S)—; —P(═S)(—)2; (—NR)2P(═O)—; (—NR)(—S)P(═O)—; (—O)(—NR)P(═O)—; (—O)(—S)P(═O)—; (—O)2P(═O)—; —(—O)P(═O)—; —(—NR)P(═O)—; (—NR)2P(═S)—; (—NR)(—S)P(═S)—; (—O)(—NR)P(═S)—; (—O)(—S)P(═S)—; (—O)2P(═S)—; —(—O)P(═S)—; and —(—NR)P(═S)—; wherein the atom A attached to unsaturated heteroatom E is attached to the sulfur which in turn is linked via a group G to the silicon atom;each R is chosen independently from hydrogen, straight, cyclic, or branched alkyl that may or may not contain unsaturation, alkenyl groups, aryl groups, and aralkyl groups, with each R containing from 1 to 18 carbon atoms;each G is independently a monovalent or polyvalent group derived by substitution of alkyl, alkenyl, aryl, or aralkyl, wherein G can contain from 1 to 18 carbon atoms, with the proviso that G is not such that the blocked mercaptosilane would contain an α,β-unsaturated carbonyl that can undergo polymerization reactions, and if G is univalent, G can be a hydrogen atom;X is independently selected from the group consisting of —Cl, —Br, RO—, RC(═O)O—, R2C═NO—, R2NO—, R2N—, —R, and —(OSiR2)t(OSiR3) wherein each R is as above and at least one X is not —R;p is 0 to 5; r is 1 to 3; z is 0 to 2; q is 0 to 6; a is 0 to 7; b is 1 to 3; j is 0 to 1, but it may be 0 only if p is 1; c is 1 to 6; t is 0 to 5; s is 1 to 3; k is 1 to 2; with the provisos that (I) if A is carbon, sulfur or sulfonyl, then (i) a+b is 2 and (ii) k is 1; (II) if A is phosphorus, then a+b is 3 unless both (i) c is greater than 1 and (ii) b is 1, in which case a is c+1; and (III) if A is phosphorus, then k is 2.
Owner:GENERAL ELECTRIC CO

C3/C3 fluoroquinolone dimmer derivative using oxadiazole as connection chain as well as preparation method and application thereof

The invention discloses a C3 / C3 fluoroquinolone dimmer derivative using oxadiazole as a connection chain as well as a preparation method and an application thereof. The C3 / C3 fluoroquinolone dimmer derivative using oxadiazole as a connection chain is a compound which has the following structural general formula (I), wherein R1 and R1' are independently selected from H, (C1-C10) alkyl, (C3)-(C10) cycloalkyl, (C1)-(C10) haloalkyl and substituted aryl group or substituted heterocyclic aryl group; R2 and R2' are independently selected from H, (C1-C7)alkyl, (C3)-(C7) cycloalkyl, substituted aryl group, substituted heterocyclic aryl group and hydrocarbon acyl or sulfonyl; R3 and R3' are independently selected from H, (C1-C5) alkyl, (C3)-(C5) cycloalkyl, substituted aryl radical or substitutionalheterocyclic aryl radical; and X and Y are independently selected from CH, N or carbon atoms connected with halogen, alkyl, oxyl, sulfenyl, amino, substituted amino, substituted aryl radical or substituted heterocyclic aryl radical. The C3 / C3 fluoroquinolone dimmer derivative using oxadiazole as a connection chain can be used for preparing medicaments for treating tumors and preventing microbialinfection diseases.
Owner:河南省健康伟业生物医药研究股份有限公司

Photosensitive resin compositions

A heat resistant negative working photosensitive composition that comprises(a) one or more polybenzoxazole precursor polymers (I): wherein x is an integer from about 10 to about 1000, y is an integer from 0 to about 900 and (x+y) is about less then 1000; Ar1 is selected from the group consisting of a tetravalent aromatic group, a tetravalent heterocyclic group, or mixtures thereof; Ar2 is selected from the group consisting a divalent aromatic, a divalent heterocyclic, a divalent alicyclic, a divalent aliphatic group that may contain silicon, or mixtures thereof; Ar3 is selected from the group consisting a divalent aromatic group, a divalent aliphatic group, a divalent heterocyclic group, or mixtures thereof; Ar4 is selected from the group consisting Ar1 (OH)2 or Ar2; G is an organic group selected from the group consisting groups having a carbonyl, carbonyloxy or sulfonyl group attached directly to the terminal NH group of the polymer;(b) one or more photo-active compounds which release acid upon irradiation (PAGs);(c) a latent crosslinker which contains at least two ˜N—(CH2OR)n units wherein n=1 or 2 and R is a linear or branched C1-C8 alkyl group, with the proviso that when a glycoluril is employed as the latent crosslinker, the G group in the polybenzoxazole precursor polymer is produced from the reaction of a cyclic anhydride; and(d) at least one solvent that is not NMP.
Owner:FUJIFILM ELECTRONICS MATERIALS US

Salts and crystalline forms of an apoptosis-inducing agent

Salts and crystalline forms of 4-(4-{[2-(4-chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-({3-nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}-sulfonyl)-2-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide are suitable active pharmaceutical ingredients for pharmaceutical compositions useful in treatment of a disease characterized by overexpression of one or more anti-apoptotic Bcl-2 family proteins, for example cancer.
Owner:ABBVIE INC

Industrial process for the synthesis of 17a-acetoxy-11ss-[4-(n,n-dimethyl-amino)- phenyl]-19-norpregna-4,9-diene-3,20-dione and new intermediates of the process

The present invention relates to a new industrial process for the synthesis of solvate- free 17a-acetoxy-11ss-[4-(N,N-dimethyl-amino)-phenyl]-19-norpregna-4,9-diene-3,20-dione [CDB -2914] of formula (I) which is a strong antiprogestogene and antiglucocorticoid agent. The invention also relates to compounds of formula (VII) and (VIII) used as intermediates in the process. The process according to the invention is the following: i) 3-(ethylene-dioxy)-estra-5(10),9(11)-diene-17-one of formula (X) is reacted with potassium acetilyde formed in situ in dry tetrahydrofuran by known method, ii) the obtained 3-(ethylene-dioxy)-17a-ethynyl-17ss-hydroxy-estra-5(10),9(11)-diene of formula (IX) is reacted with phenylsulfenyl chloride in dichloromethane in the presence of triethylamine and acetic acid, iii) the obtained isomeric mixture of 3-(ethylene-dioxy)-21-(phenyl-sulfinyl)-19-norpregna-5(10),9(11),17(20),20-tetraene of formula (VIII) is reacted first with sodium methoxide in methanol, then with trimethyl phosphite, iv) the obtained 3-(ethylene-dioxy)-17a-hydroxy-20-methoxy-19-norpregna-5(10),9(11),20-triene of formula (VII) is reacted with hydrogen chloride in methanol, then v) the obtained 3-(ethylene-dioxy)-17a-hydroxy-19-norpregna-5(10),9(11l); -diene-20- one of formula (VI) is reacted with ethylene glycol hi dichloromethane in the presence of trimethyl orthoformate and p-toluenesulfonic acid by known method, vi) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-19-norpregna- 5(10),9(11)-diene of formula (V) is reacted with hydrogen peroxide in a mixture of pyridine and dichloromethane in the presence of hexachloroacetone by known method, vii) the obtained 3,3,20,20-bis(ethylene-dioxy)-17a-hydroxy-5,10-epoxy-19-norpregn-9(11)-ene of formula (IV), containing approximately a 1:1 mixture of 5a,10a- and 5ss,10ss-epoxides, is isolated from the solution and reacted with a Grignard reagent obtained from 4-bromo-N,N-dimethyl-aniline in tetrahydrofuran.
Owner:RICHTER GEDEON NYRT

Sulfenylation process of pyrozole compound with trifluoromethanesulfonyl radical

The present invention relates to one sulfenylation process of pyrazole compound with CF3SO2K or the mixed salt of CF3SO2K and CF3SO2Na. CF3SO2K or the mixed salt of CF3SO2K and CF3SO2Na are made to react first with reagent A and then with pyrazole compound to obtain pyrazole compound with trifluoromethanesulfonyl radical, where the reagent A is selected from phosgene, TCF, POCl3, PC1 and SOC12. The present invention finds one new sulfenylation reagent, and is easy to prepare, high in reaction, activity, easy to use and high in yield.
Owner:JIANGSU PESTICIDE RES INST

Organic optoelectronic material, preparation method thereof and organic light emitting diode containing organic material

The invention relates to an organic optoelectronic material, a preparation method of the organic optoelectronic material and an organic light emitting diode containing the organic material. The material is shown in the formula I, wherein R1 and R2 are respectively and independently hydrogen, halogen, cyanogroup, nitryl, isothiocyano, sulfonyl, sulfuryl, acylamino, alkyl of which the carbon atom number is 1 to 10 or alkoxy of which the carbon atom number is 1 to 12; A1 and A2 are respectively and independently phenyl, polycyclic conjugate aryl of which the carbon atom number is 10 to 60 or aromatic heterocyclic group containing at least one of N, S and O; two phenyls having groups R1 and R2 and two para-positions relative to the groups R1 and R2 are connected by directly bonding or connected through X; A1 is connected with A2 by directly bonding or through Y; X and Y are respectively and independently sulphur, oxygen, alkylene of which the carbon atom number is 1 to 6 or alkenyl of which the carbon atom number is 2 to 6; Ar1 and Ar2 are respectively and independently phenyl, cyanophenyl, alkyl benzene, polycyclic conjugate aryl of which the carbon atom number is 10 to 60 or aromatic heterocyclic group containing at least one of N, S and O.
Owner:VALIANT CO LTD

Potassium salt of (s)-omeprazole

The present invention relates to a novel form of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazole, known under the generic name omeprazole. More specifically, it relates to a novel crystalline form of the potassium salt of the (S)-enantiomer of 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazole. The present invention also relates to processes for preparing such a form of the potassium salt of (S)-omeprazole and pharmaceutical compositions containing it.
Owner:ASTRAZENECA AB

Organic electroluminescent materials and devices made from such materials

Organic electroluminescent materials having desirable efficiency, weight, and durability properties, as well as devices made from such materials. In one aspect, an organic electroluminescent material is electroluminescently conductively coupled directly with an anode and cathode such that the organic electroluminescent material emits light upon the application of a voltage across the anode and cathode. The organic electroluminescent material includes an organo-siloxane polymer having a main chain comprising anthracene and / or pentacene. The anthracene or pentacene can be substituted optionally with hydrogen, alkyl, aryl, heteroalkyl, heteroaralkyl, nitro, cyano, hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, halogen, dialkylamino, diarylamino, diaralkylamino, arylamino, alkylamino, arylalkylamino, carbonyloxy, carbonylalkoxy, carbonylalkyloxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxylcarbonyloxy, sulfonyl, sulfonyloxy, alkyl bonded to the adjacent silicon atom of the organo-siloxane polymer, aryl bonded to the adjacent silicon atom of the organo-siloxane polymer, or the adjacent silicon atom of said organo-siloxane polymer.
Owner:ORGANIC DISPLAY TECH

Methods, compositions and devices for performing ionization desorption on silicon derivatives

Embodiments of the present invention are directed to a substrate for performing ionization desorption on porous silicon, methods for performing such ionization desorption and methods of making substrates. One embodiment directed to a substrate for performing ionization desorption on silicon comprises a substrate having a surface having a formula of: As used above, X is H or Y, where at least at least twenty five mole percent of X is Y and Y is hydroxyl, or —O—R1, or O—SiR1, R2, R3 wherein R1, R2, and R3 are selected from the group consisting of alkyl, alkenyl, alkynyl, aromatic, amino alkyl, amino alkenyl, amino alkynyl, pyridinyl, pyrridonyl, and carbonyl, alcohol and carboxylic acid derivatives thereof having one to twenty five atoms, and hydroxyl, amino, amide, carboxyl, ester, carbonyl, sulfhydryl, sulfonyl, phosphoral, bromo, iodo, chloro and fluoro derivatives. The letter “n” represents an integer from 1 to infinity and any vacant valences are silicon atoms, hydrogen or impurities.
Owner:WATERS TECH CORP

Ligands of 5-ht6 receptors, a pharmaceutical composition, method for the production and use thereof

The invention relates to novel ligands of 5-HT6 receptor, to a pharmaceutical composition containing said novel ligands of 5-HT6 receptor as active component and to novel medicaments used for humans and warm-blooded animals for treating diseases and conditions of central nervous system, in pathogenesis of which neuromediator systems induced by 5-HT6 receptors are playing an essential role.Azaheterocyclic compounds of the general formula 1 or racemates, or optical or geometrical isomers, or pharmaceutically acceptable salts and / or hydrates thereof are used as 5-HT6 ligands.Wherein R2 and R3 independently of each other represent an amino group substituent selected from hydrogen; substituted carbonyl; substituted aminocarbonyl; substituted aminothiocarbonyl; substituted sulphonyl; C1-C5-alkyl optionally substituted by: C6-C10-arylaminocarbonyl, heterocyclyl, C6-C10-arylaminocarbonyl, C6-C10-arylaminothiocarbonyl, C5-C10-azaheteroaryl, optionally substituted carboxyl, nitryl group, optionally substituted aryl; R1k represents from 1 to 3 substituents of cyclic system, independent of each other and selected from hydrogen, optionally substituted C1-C5-alkyl, C1-C5-alkoxy, C1-C5-alkenyl, C1-C5-alkynyl, halogen, trifluoromethyl, CN-group, carboxyl, optionally substituted aryl, optionally substituted heterocyclyl, substituted sulfonyl, optionally substituted carboxyl; the solid line accompanied by the dotted line represents a single or a double bond; n=1, 2 or 3.
Owner:IVASHCHENKO ANDREY ALEXANDROVICH +4

Layered structure

Disclosed is a layered structure including a first electrode and a second electrode, a light-emitting layer or a charge separation layer between the first electrode and the second electrode, and a layer containing a conjugated polymer compound between the light-emitting layer or the charge separation layer and the first electrode, wherein the conjugated polymer compound contains a repeating unit selected from the group consisting of a repeating unit represented by formula (1):wherein Ar1 represents a divalent aromatic group, R1 represents a substituent group having a group represented by formula (2), Ar1 may have a substituent group other than R1, and n1 represents an integer of 1 or more;-(R2)c1-(Q1)n2-Y1(M1)a1(Z1)b1  (2)wherein R2 represents a divalent aromatic group which may have a substituent group, Q1 represents a divalent organic group which may have a substituent group, Y1 represents a carbocation, an ammonium cation, a phosphonyl cation or a sulfonyl cation, M1 represents F−, Cl−, Br−, I−, OH−, RaSO3−, RaCOO−, ClO−, ClO2−, ClO3−, ClO4−, SCN−, CN−, NO3−, SO42−, HSO4−, PO43−, HPO42−, H2PO4−, BF4− or PF6−, Z1 represents a metal ion or an ammonium ion which may have a substituent group, c1 represents 0 or 1, n2 represents an integer of 0 or more, provided that n2 is 0 when c1 is 0, a1 represents an integer of 1 or more, b1 represents an integer of 0 or more, a1 and b1 are selected so that the charge of the substituent group represented by formula (2) is 0, Ra represents an alkyl group having 1 to 30 carbon atoms, which may have a substituent group, or an aryl group having 6 to 50 carbon atoms, which may have a substituent group.
Owner:SUMITOMO CHEM CO LTD

Lysine specific demethylase-1 inhibitors and their use

The present invention relates to a compound of Formula 1, wherein: (A) is heteroaryl or aryl; each (A′), if present, is independently chosen from aryl, arylalkoxy, arylalkyl, heterocyclyl, aryloxy, halo, alkoxy, haloalkyl, cycloalkyl, haloalkoxy, and cyano, wherein each (A′) is substituted with 0, 1, 2, or 3 substituents independently chosen from halo, haloalkyl, haloalkoxy, aryl, arylalkoxy, alkyl, alkoxy, amido, —CH2C(=0)NH2, heteroaryl, cyano, sulfonyl, and sulfinyl; X is 0, 1, 2, or 3; (B) is a cyclopropyl ring, wherein (A) and (Z) are covalently bonded to different carbon atoms of (B); (Z) is —NH—; (L) is chosen from a single bond, —CH2—, —CH2CH2—, —CH2CH2CH2—, and —CH2CH2CH2CH2—; and (D) is an aliphatic carbocyclic group or benzocycloalkyl, wherein said aliphatic carbocyclic group or said benzocycloalkyl has 0, 1, 2, or 3 substituents independently chosen from —NH2, —NH(C1-C6 alkyl), —N(C1-C6 alkyl)(C1-C6 alkyl), alkyl, halo, amido, cyano, alkoxy, haloalkyl, and haloalkoxy. (A′)X-(A)-(B)—(Z)-(L)-(D) formula (I) The compounds of the invention show activity for inhibiting LSD1, which makes them useful in the treatment or prevention of diseases such as cancer.
Owner:ORYZON GENOMICS SA

Electric double-layer capacitor

An activated carbon comprising a carbonized and activated compound represented by the formula (1):(wherein, R represents a hydrocarbon group having 1 to 12 carbon atoms, said hydrocarbon group may be optionally substituted with hydroxyl group, alkyl group, alkoxy group, aryl group, aryloxy group, sulfonyl group, halogen atoms, nitro group, thioalkyl group, cyano group, carboxyl group, amino group or amide group, R′ represents hydrogen atom or methyl group, and n represents an integer of 4, 6, or 8).
Owner:SUMITOMO CHEM CO LTD

17-hydroxy c27 steroid compound and its synthesis and use

The present invention is one kind of 17-hydroxy C27 steroid compound and its synthesis and use. The synthesis process of the present invention is simple and suitable for industrial production in synthesizing pennogenin as well as dihydro pennogenin and OSW-1 aglycone analog.
Owner:SHANGHAI INST OF ORGANIC CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products