Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

669 results about "Leaving group" patented technology

In chemistry, a leaving group is a molecular fragment that departs with a pair of electrons in heterolytic bond cleavage. Leaving groups can be anions or neutral molecules, but in either case it is crucial that the leaving group be able to stabilize the additional electron density that results from bond heterolysis. Common anionic leaving groups are halides such as Cl⁻, Br⁻, and I⁻, and sulfonate esters such as tosylate (TsO⁻). Fluoride (F⁻) functions as a leaving group in the nerve-agent sarin gas. Common neutral molecule leaving groups are water and ammonia. Leaving groups may also be positively charged cations (such as H⁺ released during the nitration of benzene); these are also known specifically as electrofuges.

Terminally-branched polymeric linkers containing extension moieties and polymeric conjugates containing the same

E1a-3a are independently selected from the group consisting of hydrogen, C1-6 alkyls, C3-12 branched alkyls, C3-8 cycloalkyls, C1-6 substituted alkyls, C3-8 substituted cycloalkyls, aryls, substituted aryls, aralkyls, C1-6 heteroalkyls, substituted C1-6 heteroalkyls, C1-6 alkoxy, phenoxy, C1-6heteroalkoxy, wherein B1 is a leaving group, OH, a residue of a hydroxyl-containing moiety or a residue of an amine-containing moiety or wherein E6 is independently selected from the same group which defines wherein E1b-3b are independently selected from the group consisting of hydrogen, C1-6 alkyls, C3-12 branched alkyls, C3-8 cycloalkyls, C1-6 substituted alkyls, C3-8 substituted cycloalkyls, aryls, substituted aryls, aralkyls, C1-6 heteroalkyls, substituted C1-6 heteroalkyls, C1-6 alkoxy, phenoxy, C1-6 heteroalkoxy, wherein B2 is a leaving group, OH, a residue of a hydroxyl-containing moiety or a residue of an amine-containing moiety; G is a polymeric residue; Y1-3, Y2a-d and Y3a-d are each independently O, S or NR11a M1-4, M2a-2d, M3a-3d, and M4a-4d are each independently O, S or NR11b; M5 and M5a-d are each independently X or Q, wherein X is an electron withdrawing group and Q is a moiety containing a free electron pair positioned three to six atoms from C(=Y3) or C(=Y3a-d); R1-10, R1a-11a, R1b-11b, R1c-10c and R1d-10d are each independently selected from the group consisting of hydrogen, C1-6 alkyls, C3-12 branched alkyls, C3-8 cycloalkyls, C1-6 substituted alkyls, C3-8 substituted cycloalkyls, aryls, substituted aryls, aralkyls, C1-6 heteroalkyls, substituted C1-6 heteroalkyls, C1-6 alkoxy, phenoxy and C1-6 heteroalkoxy; and a, b, c, d1-d6, e1-e6, f1-f6, g1-g6, h1-h6, i1-i6, j1-j6, k1-k6, l1-l6, m1-m6 are each independently zero or a positive integer.
Owner:BELROSE PHARMA

Cross-linking oligonucleotides

This invention is directed to novel substituted nucleotide bases with a crosslinking arm which accomplish crosslinking between specific sites on adjoining strands of oligonucleotides a oligodeoxynucleotides. The invention is also directed to oligonucleotides comprising at least one of these crosslinking agents and to the use of the resulting novel oligonucleotides for diagnostic and therapeutic purposes. The crosslinking agents of the invention are of the following formula (.GAMMA.): wherein, R.sub.1 is hydrogen, or a sugar moiety or analog thereof optionally substituted at its 3' or its 5' position with a phosphorus derivative attached to the sugar moiety by an oxygen and including groups Q.sub.1 Q.sub.2 and Q.sub.3 or with a reactive precursor thereof suitable for nucleotide bond formation; Q.sub.1 is hydroxy phosphate a diphosphate; Q.sub.2 .dbd.of or .dbd.S; Q.sub.3 is CH.sub.2 --R', S--R', O--R', or N--R'R"; each of R' and R" is independently hydrogen or C.sub.1-6 alkyl; B is a nucleic acid base or analog thereof that is a component of an oligonucleotide; Y is a functional linking group; each of to and q is independently 0 to 8, inclusive; r is 0 or 1; and A' is a leaving group. This invention is also directed to novel 3,4-disubstituted and 3,4,-trisubstituted pyrazolo[3,4-d]-pyrimidines and to the use of these nucleic acid bases in the preparation of oligonucleotides. The invention includes nucleosides and mono- and oligonucleotides comprising at least one of these pyrazolopyrimidines, and to the use of the resulting novel oligonucleotides for diagnostic purposes.
Owner:DRUG ROYALTY TRUST 9

Synthetic process for trans-aminocyclohexyl ether compounds

A method of stereoselectively making an aminocyclohexyl ether comprises, for example, reacting to form the aminocyclohexyl ether having the formula respectively, wherein independently at each occurrence, R1 and R2 are independently hydrogen, C1-C8alkyl, C3-C8alkoxyalkyl, C1-C8hydroxyalkyl, or C7-C12aralkyl; or R1 and R2 are independently C3-C8alkoxyalkyl, C1-C8hydroxyalkyl, and C7-C12aralkyl; or R1 and R2, when taken together with the nitrogen atom to which they are directly attached in formula (57) or (75), form a ring denoted by formula (I): wherein the ring of formula (I) is formed from the nitrogen as shown as well as three to nine additional ring atoms independently carbon, nitrogen, oxygen, or sulfur; where any two adjacent ring atoms may be joined together by single or double bonds, and where any one or more of the additional carbon ring atoms may be substituted with one or two substituents selected from the group consisting of hydrogen, hydroxy, C1-C3hydroxyalkyl, oxo, C2-C4acyl, C1-C3alkyl, C2-C4alkylcarboxy, C1-C3alkoxy, and C1-C20alkanoyloxy, or may be substituted to form a spiro five- or six-membered heterocyclic ring containing one or two oxygen and / or sulfur heteroatoms; or any two adjacent additional carbon ring atoms may be fused to a C3-C8carbocyclic ring, and any one or more of the additional nitrogen ring atoms may be substituted with substituents selected from the group consisting of hydrogen, C1-C6alkyl, C2-C4acyl, C2-C4hydroxyalkyl and C3-C8alkoxyalkyl; or R1 and R2, when taken together with the nitrogen atom to which they are directly attached in formula (I), may form a bicyclic ring system selected from the group consisting of 3-azabicyclo[3.2.2]nonan-3-yl, 2-azabicyclo[2.2.2]octan-2-yl, 3-azabicyclo[3.1.0]hexan-3-yl, and 3-azabicyclo[3.2.0]heptan-3-yl; and wherein R3, R4 and R5 are independently bromine, chlorine, fluorine, carboxy, hydrogen, hydroxy, hydroxymethyl, methanesulfonamido, nitro, cyano, sulfamyl, trifluoromethyl, C2-C7alkanoyloxy, C1-C6alkyl, C1-C6alkoxy, C2-C7alkoxycarbonyl, C1-C6thioalkyl, aryl or N(R6,R7) where R6 and R7 are independently hydrogen, acetyl, methanesulfonyl or C1-C6alkyl; or R3, R4 and R5 are independently hydrogen, hydroxy or C1-C6alkoxy; with the proviso that R3, R4 and R5 cannot all be hydrogen; and wherein O-J is a leaving group. Methods of making intermediates are also disclosed.
Owner:CARDIOME PHARMA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products