Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4363 results about "Organic semiconductor" patented technology

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor

There have been problems in that a dedicated apparatus is needed for a conventional method of manufacturing an organic thin film transistor and in that: a little amount of an organic semiconductor film is formed with respect to a usage amount of a material; and most of the used material is discarded. Further, apparatus maintenance such as cleaning of the inside of an apparatus cup or chamber has needed to be frequently carried out in order to remove the contamination resulting from the material that is wastefully discarded. Therefore, a great cost for materials and man-hours for maintenance of apparatus have been required. In the present invention, a uniform organic semiconductor film is formed by forming an aperture between a first substrate for forming the organic semiconductor film and a second substrate used for injection with an insulating film formed at a specific spot and by injecting an organic semiconductor film material into the aperture due to capillarity to the aperture. The insulating film formed at the specific spot enables formation of the organic semiconductor film with high controllability. Further, the insulating film can also serve as a spacer that holds the aperture, that is, an interval (gap) between the substrates.
Owner:SEMICON ENERGY LAB CO LTD

Thin-film transistor, method of producing thin-film transistor, electronic circuit, display, and electronic device

InactiveUS20050029514A1Easy and highly reliable mannerReduce the driving voltageTransistorSolid-state devicesDisplay deviceEngineering
Aspects of the invention can provide a thin-film transistor having good transistor characteristics and operable with a low driving voltage, a method of producing such a thin-film transistor, a high-reliability electronic circuit, a display, and an electronic device. In an exemplary thin-film transistor according to the invention, a gate electrode can be formed on a substrate via an underlying layer, and a gate insulating layer can be formed on the substrate such that the gate electrode is covered with the gate insulating layer. A source electrode and a drain electrode are formed on the gate insulating layer such that they are separated from each other by a gap formed just above the gate electrode. An organic semiconductor layer can be formed thereon such that the electrodes are covered with the organic semiconductor layer. A region between the electrodes of the organic semiconductor layer functions as a channel region. A protective layer can be arranged on the organic semiconductor layer. This thin-film transistor is characterized in that the organic semiconductor layer is formed after the gate insulating layer is formed, and the gate insulating layer has the capability of causing the organic semiconductor layer to be aligned.
Owner:SEIKO EPSON CORP

Thin-film transistor, method of producing thin-film transistor, electronic circuit, display, and electronic device

Aspects of the invention can provide a thin-film transistor having good transistor characteristics and operable with a low driving voltage, a method of producing such a thin-film transistor, a high-reliability electronic circuit, a display, and an electronic device. In an exemplary thin-film transistor according to the invention, a gate electrode can be formed on a substrate via an underlying layer, and a gate insulating layer can be formed on the substrate such that the gate electrode is covered with the gate insulating layer. A source electrode and a drain electrode are formed on the gate insulating layer such that they are separated from each other by a gap formed just above the gate electrode. An organic semiconductor layer can be formed thereon such that the electrodes are covered with the organic semiconductor layer. A region between the electrodes of the organic semiconductor layer functions as a channel region. A protective layer can be arranged on the organic semiconductor layer. This thin-film transistor is characterized in that the organic semiconductor layer is formed after the gate insulating layer is formed, and the gate insulating layer has the capability of causing the organic semiconductor layer to be aligned.
Owner:SEIKO EPSON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products