Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3669 results about "UV curing" patented technology

UV curing is the process by which ultraviolet light is used to initiate a photochemical reaction that generates a crosslinked network of polymers. UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. In comparison to other technologies, curing with UV energy may be considered a low temperature process, a high speed process, and is a solventless process, as cure occurs via direct polymerization rather than by evaporation. Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector.

Device isolation technology on semiconductor substrate

A method of forming device isolation regions on a trench-formed silicon substrate and removing residual carbon therefrom includes providing a flowable, insulative material constituted by silicon, carbon, nitrogen, hydrogen, oxygen or any combination of two or more thereof; forming a thin insulative layer, by using the flowable, insulative material, in a trench located on a semiconductor substrate wherein the flowable, insulative material forms a conformal coating in a silicon and nitrogen rich condition whereas in a carbon rich condition, the flowable, insulative material vertically grows from the bottom of the trenches; and removing the residual carbon deposits from the flowable, insulative material by multi-step curing, such as O2 thermal annealing, ozone UV curing followed by N2 thermal annealing.
Owner:ASM JAPAN

High efficiency UV curing system

An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV bulbs per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV bulbs can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical / ozone generated remotely and / or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and / or position can enhance uniformity of substrate illumination.
Owner:APPLIED MATERIALS INC

Display panel and display device using the same

A liquid crystal display panel includes a counter substrate having a counter electrode and a multi-layered dielectric film both formed thereon, and an array substrate formed with pixel electrodes and thin-film transistors serving as switching elements. A layer of polymer dispersed liquid crystal material containing a UV-curable resin component and a liquid crystal component is sandwiched and sealed between the counter and array substrates. A light shielding film is formed over each thin-film transistor. The multi-layered dielectric film is a laminated structure of alternating thin-films of SiO2 and HfO2. Since the multi-layered dielectric film is of a nature capable of transmitting UV-rays of light therethrough, the UV-curable resin component positioned underneath the multi-layered dielectric film can be cured during the manufacture. Also, since the multi-layered dielectric film is of a nature capable of reflecting light of a visible region, it serves as a black matrix, reflecting the visible light modulated by the display panel. Black beads are used to keep the film thickness of the liquid crystal layer at a predetermined value. Preferably, a dielectric thin-film having a relative dielectric constant smaller than that of the liquid crystal material is formed on signal lines for transmitting signals to the thin-film transistors, to thereby accomplish an electromagnetic shield. Where color filters are to be formed on the pixel electrodes, those color filters may be formed on the signal lines to accomplish the electromagnetic shield.
Owner:GK BRIDGE 1

Optical fiber diffraction grating, a method of fabricating thereof and a laser light source

InactiveUS6067392ACanceled outPositive linear thermal expansion coefficientOptical fibre with multilayer core/claddingCoupling light guidesPolyesterLaser light
PCT No. PCT / JP96 / 03000 Sec. 371 Date Jun. 16, 1997 Sec. 102(e) Date Jun. 16, 1997 PCT Filed Oct. 16, 1996 PCT Pub. No. WO97 / 14983 PCT Pub. Date Apr. 24, 1997A diffraction grating portion (12) is formed in an optical fiber (10), having a diameter of 125 mu m and serving to transmit light, along its optical axis. The optical fiber is concentrically surrounded by a lower coating portion (14) having an outer diameter of 300 mu m and consisting of a silicone resin. The lower coating portion is concentrically surrounded by a coating portion (16) having an outer diameter of 900 mu m and consisting of a liquid crystal polymer, e.g., polyester amide. The coating portion is further surrounded by an outermost coating portion (18) having an outer diameter of 1 mm and consisting of a UV curing resin colored for identification. Both the optical fiber (10) and the lower coating portion (14) have positive thermal expansion coefficients. In contrast to this, the coating portion (16) consisting of the liquid crystal polymer has a negative thermal expansion coefficient.
Owner:SUMITOMO ELECTRIC IND LTD

UV curing color decorative coating

InactiveCN101407651ASolve the problem of deep curingAvoid pollutionMulticolor effect coatingsPolyesterUltraviolet
The invention relates to an ultraviolet curing color decorative coating, the components of the coating and the parts by weight thereof are as follows: 5 to 25 parts of epoxy acrylate prepolymer, 5 to 30 parts of polyurethane acrylate prepolymer, 2 to 10 parts of polyester acrylate prepolymer, 15 to 70 parts of acrylate monomer, 1 to 10 parts of photoinitiator, 1 to 35 parts of pigment, 0.5 to 10 parts of dispersant and 0.1 to 2 parts of auxiliary agent, the acrylate monomer is a mixture of the monomer with bifunctionality and the monomer with high functionality, wherein, the mixture ratio of the monomer with high bifunctionality to the monomer with bifunctionality is 1: 0.3 to 8. Compared with an ultraviolet curing transparent varnish, the ultraviolet curing color decorative coating has stronger decorative effect and almost the same curing speed, paint film hardness, adhesion, paint film gloss, and the like; and compared with a traditional solvent based colored paint, the ultraviolet curing color decorative coating does not contain volatile organic solvent, thereby avoiding the pollution and greatly improving the production efficiency. The ultraviolet curing color decorative coating is applicable to the decoration of plastics, wood materials, metals and other base materials.
Owner:BAODING LUCKY POLYMER MATERIAL TECH DEV +1

Light emitting apparatus and method for curing inks, coatings and adhesives

A UV curing apparatus and method is provided for enhancing the distribution and application of UV light to UV photo initiators in a UV curable ink, coating or adhesive. The UV curing apparatus and method comprises UV LED assemblies in a first row with the UV LED assemblies spaced from adjacent UV LED assemblies. At least one second row of a plurality of UV LED assemblies are provided next to the first row but with the UV LED assemblies of the second row positioned adjacent the spaces between adjacent UV LED assemblies in the first row thereby to stagger the second row of UV LED assemblies from the UV LED assemblies in the first row. Desirably, the rows of staggered UV LED assemblies are mounted on a panel. UV curable products, articles or other objects containing UV photo initiators that are in or on a web can be conveyed or otherwise moved past the rows of UV LED assemblies for effective UV curing. This arrangement facilitates more uniformly application of UV light on the UV curable ink, coating and/or adhesives in the UV curable products, articles or other objects. The apparatus can include one or more of the following: rollers for moving the web, mechanisms for causing the panel to move in an orbital or reciprocal path, and an injection tube for injecting a non-oxygen gas in the area of UV light curing.
Owner:CON TROL CURE

Highly wearable vacuum coating ultraviolet curing coatings

ActiveCN101157808AImprove adhesionImproved RCA wear performancePolyurea/polyurethane coatingsWear resistantLacquer
The invention relates to the electronic application-coating field, in particular to uv-curing coating with high wearing resistance and vacuum coating. The compositions and contents of the invention are: 10 wt percent to 30 wt percent of difunctional group polyurethane acrylate, 10 wt percent to 40 wt percent of high functional group polyurethane acrylate, 5 wt percent to 20 wt percent of high functional group acrylate monomer, 0 wt percent to 15 wt percent of monofunctional group acrylate monomer, 1 wt percent to 10 wt percent of acid adhesive promoter, 1 wt percent to 6 wt percent of photoinitiator, 0 wt percent to 5 wt percent of nano wearing resistance materials, 0.1 wt percent to 2 wt percent of additive and 10 wt percent to 50 wt percent of solvent. The invention is designed for providing surface protection for vacuum coating parts of electric products such as mobile phone, MP3, and digital camera, etc., and is characterized by good surface effect, good performances of ultrawear-resistance, high temperature and humidity resistance, anti-cold thermal cycling and anti-yellowing, etc., wherein, RCA wear can be up to more than 1500 times, which can effectively improve the service life of electric products. The invention effectively enhances the adhesion and wearing resistant performance of the uv-curing and vacuum coating dope, solves the matching problem of the bottom and surface lacquer of the uv-curing and vacuum coating dope, and has broad university.
Owner:HUNAN SOKAN NEW MATERIAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products