Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

19950 results about "Laser light" patented technology

Semiconductor device and method for manufacturing the same, and electric device

It is an object of the present invention to simplify steps needed to process a wiring in forming a multilayer wiring. In addition, when a droplet discharging technique or a nanoimprint technique is used to form a wiring in a contact hole having a comparatively long diameter, the wiring in accordance with the shape of the contact hole is formed, and the wiring portion of the contact hole is likely to have a depression compared with other portions. A penetrating opening is formed by irradiating a light-transmitting insulating film with laser light having high intensity and a pulse high in repetition frequency. A plurality of openings having a minute contact area is provided instead of forming one penetrating opening having a large contact area to have an even thickness of a wiring by reducing a partial depression and also to ensure contact resistance.
Owner:SEMICON ENERGY LAB CO LTD

Ultraviolet laser apparatus and exposure apparatus using same

An ultraviolet laser apparatus having a single-wavelength oscillating laser generating laser light between an infrared band and a visible band, an optical amplifier for amplifying the laser light, and a wavelength converting portion converting the amplified laser light into ultraviolet light using a non-linear optical crystal. An exposure apparatus transfers a pattern image of a mask onto a substrate and includes a light source having a laser apparatus emitting laser light having a single wavelength, a first fiber optical amplifier for amplifying the laser light, a light dividing device for dividing or branching the amplified laser light into plural lights, and second fiber optical amplifiers for amplifying the plural divided or branched lights, respectively, and a transmission optical system for transmitting the laser light emitted from the light source to the exposure apparatus.
Owner:NIKON CORP

Automatic video system using multiple cameras

A camera array captures plural component images which are combined into a single scene from which “panning” and “zooming” within the scene are performed. In one embodiment, each camera of the array is a fixed digital camera. The images from each camera are warped and blended such that the combined image is seamless with respect to each of the component images. Warping of the digital images is performed via pre-calculated non-dynamic equations that are calculated based on a registration of the camera array. The process of registering each camera in the arrays is performed either manually, by selecting corresponding points or sets of points in two or more images, or automatically, by presenting a source object (laser light source, for example) into a scene being captured by the camera array and registering positions of the source object as it appears in each of the images. The warping equations are calculated based on the registration data and each scene captured by the camera array is warped and combined using the same equations determined therefrom. A scene captured by the camera array is zoomed, or selectively steered to an area of interest. This zooming- or steering, being done in the digital domain is performed nearly instantaneously when compared to cameras with mechanical zoom and steering functions.
Owner:FUJIFILM BUSINESS INNOVATION CORP

Plasma process with photoresist mask pretreatment

A method for etching features in a dielectric layer through a photoresist (PR) mask is provided. The PR mask is patterned using laser light having a wavelength not more than 193 nm. The PR mask is pre-treated with a noble gas plasma, and then a plurality of cycles of a plasma process is provided. Each cycle includes a deposition phase that deposits a deposition layer over the PR mask, the deposition layer covering a top and sidewalls of mask features of the PR mask, and a shaping phase that shapes the deposition layer deposited over the PR mask.
Owner:LAM RES CORP

Laser pulmonary vein isolation

A catheter introduction apparatus provides an optical assembly for emission of laser light energy. In one application, the catheter and the optical assembly are introduced percutaneously, and transseptally advanced to the ostium of a pulmonary vein. An anchoring balloon is expanded to position a mirror near the ostium of the pulmonary vein, such that light energy is reflected and directed circumferentially around the ostium of the pulmonary vein when a laser light source is energized. A circumferential ablation lesion is thereby produced, which effectively blocks electrical propagation between the pulmonary vein and the left atrium.
Owner:BIOSENSE

System and method for conditioning animal tissue using laser light

InactiveUS20100049180A1Promote wound repairEnhances surgical wound healingSurgical instrument detailsLight therapyLaser lightHsp70 expression
Systems and methods for prophylactic measures aimed at improving wound repair. In some embodiments, laser-mediated preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed laser (λ=1850 nm, Tp=2 ms, 50 Hz, H=7.64 mJ / cm2) the skin of transgenic mice that contain an hsp70 promoter-driven luciferase were preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Bioluminescent imaging studies in vivo indicated that an optimized laser protocol increased hsp70 expression by 15-fold. Under these conditions, healed areas from incisions that were laser-preconditioned were two times stronger than those from control wounds. Our data suggest that these methods can provide effective and improved tissue-preconditioning protocols and that mild laser-induced heat shock that correlated with an expression of Hsp70 may be a useful therapeutic intervention prior to or after surgery.
Owner:LOCKHEED MARTIN CORP +2

Semiconductor light emitting element, and its manufacturing method

A semiconductor light emitting element of nitride compound semiconductors excellent in cleavability, heat radiation and resistance to leakage is made by epitaxially grow a nitride compound semiconductor layers on a substrate of sapphire, for example, and thereafter separating the substrate. For separating the substrate, there are a technique using a abruption mechanism susceptible to a stress such as a "lift-off layer" and a recesses on a substrate. A technique using laser light to cause a local dense heat stress at the abruption mechanism is effective. A nitride compound semiconductor obtained by separating the substrate may be used as a new substrate to epitaxially grow high-quality nitride compound semiconductors thereon.
Owner:ALPAD CORP

Laser ablation process and apparatus

InactiveUS20020045811A1Reduce Fresnel reflectionMaximize transmitted lightControlling energy of instrumentDiagnostics using spectroscopyFiberLaser light
A laser catheter is disclosed wherein optical fibers carrying laser light are mounted in a catheter for insertion into an artery to provide controlled delivery of a laser beam for percutaneous intravascular laser treatment of atherosclerotic disease. A transparent protective shield is provided at the distal end of the catheter for mechanically diplacing intravascular blood and protecting the fibers from the intravascular contents, as well as protecting the patient in the event of failure of the fiber optics. Multiple optical fibers allow the selection of tissue that is to be removed. A computer controlled system automatically aligns fibers with the laser and controls exposure time. Spectroscopic diagnostics determine what tissue is to be removed.
Owner:KITTRELL CARTER +2

Intralumenal contact sensor

InactiveUS6942657B2Eliminate aberrant wave conductionReduce lossDiagnosticsCatheterLight treatmentLaser light
An apparatus and method for phototherapy are described in which laser light or other radiation is projected from within a catheter, through a balloon member, and toward the surface of tissue. The light reflected from body fluids or the tissue surface is captured by a collecting device located within the catheter, e.g., within the balloon member, and the intensity of the reflected light is ascertained. The apparatus and method provides for accurately positioning the apparatus against the tissue treatment site.
Owner:CARDIOFOCUS INC

Method and apparatus for noninvasive measurement of carotenoids and related chemical substances in biological tissue

InactiveUS6205354B1Rapid and noninvasive and quantitative measurementRiskRadiation pyrometrySurgeryResonance Raman spectroscopyAntioxidant
A method and apparatus are provided for the determination of levels of carotenoids and similar chemical compounds in biological tissue such as living skin. The method and apparatus provide a noninvasive, rapid, accurate, and safe determination of carotenoid levels which in turn can provide diagnostic information regarding cancer risk, or can be a marker for conditions where carotenoids or other antioxidant compounds may provide diagnostic information. Such early diagnostic information allows for the possibility of preventative intervention. The method and apparatus utilize the technique of resonance Raman spectroscopy to measure the levels of carotenoids and similar substances in tissue. In this technique, laser light is directed upon the area of tissue which is of interest. A small fraction of the scattered light is scattered inelastically, producing the carotenoid Raman signal which is at a different frequency than the incident laser light, and the Raman signal is collected, filtered, and measured. The resulting Raman signal can be analyzed such that the background fluorescence signal is subtracted and the results displayed and compared with known calibration standards.
Owner:UNIV OF UTAH RES FOUND

Organic vertical-cavity surface-emitting laser

Organic vertical-cavity surface-emitting lasers ("OVCSELs"), in which a thin layer of organic material is disposed between highly reflective mirrors to thereby form a vertical cavity within a stacked arrangement. The lasers of the present invention each comprise a first mirror layer; a layer of active organic material over the first mirror layer; and a second mirror layer over the layer of first active organic material. The active organic material lases when pumped to thereby produce laser light. The present invention provides for optical semiconductor lasers with desired properties such as narrow bandwidth emission, the minimal use of active organic materials, and the facilitation of wavelength tuning and electrical pumping.
Owner:PRINCETON UNIV THE TRUSTEES OF

Devices and Methods for Ultrasonic Imaging and Ablation

Devices (i.e., catheters and guidewires) for, and methods of, ultrasonic imaging and ablation. In one embodiment, a device includes: (1) a fiber-optic bundle configured to carry laser light for ultrasonic imaging, each fiber of the fiber-optic bundle having a reflective layer oriented at an acute angle with respect thereto at a distal end thereof, (2) an elongated member associated with the fiber-optic bundle and configured to carry energy for ablation, the energy for ablation projecting past the distal end and (3) a photoacoustic layer associated with the each fiber of the fiber-optic bundle and configured to receive at least some of the laser light for the ultrasonic imaging and generate ultrasonic pressure waves in response thereto.
Owner:TOTAL WIRE CORP

Method and apparatus for collecting and processing physical space data for use while performing image-guided surgery

A method and apparatus for collecting and processing physical space data used while performing image-guided surgery is disclosed. Physical space data is collected by probing physical surface points of surgically exposed tissue. The physical space data provides three-dimensional (3-D) coordinates for each of the physical surface points. Based on the physical space data collected, point-based registrations used to indicate surgical position in both image space and physical space are determined. In one embodiment, the surface of surgically exposed tissue of a living patient is illuminated with laser light. Light reflected from the illuminated surface of the exposed tissue is received and analyzed. In another embodiment, one or more magnetic fields of known shape and size are established in the proximity of the exposed tissue. Data associated with the strength of the magnetic fields is acquired and analyzed.
Owner:VANDERBILT UNIV

Long range optical reader

InactiveUS7055747B2Signal strength (signal to noise ratio) of a long range reader can be enhancedIncrease signal strengthPrinted circuit aspectsConductive pattern reinforcementHand heldLaser light
An indicia decoding device can have an image sensor and a laser diode assembly configured to project laser light onto a substrate. When a trigger signal is received by the indicia decoding device, the device can calculate a delay and enable the laser diode assembly if a delay threshold is satisfied. The indicia decoding device, in one embodiment, can include a hand held housing and an imaging module carrying the image sensor.
Owner:HAND HELD PRODS

Multi-wavelength laser device

A multi-wavelength laser device includes at least two of a blue laser diode, a red laser diode, and an infrared laser diode, which are arranged in the same direction on the same base. One laser light emission point is arranged behind another in increasing order of wavelengths of the laser diodes.
Owner:SHARP FUKUYAMA LASER CO LTD

Holographic Image Display Systems

The invention relates to holographic head-up displays, to holographic optical sights, and also to 3D holographic image displays. We describe a holographic head-up display and a holographic optical sight, for displaying, in an eye box of the display / sight, a virtual image comprising one or more substantially two-dimensional images, the head-up display comprising: a laser light source; a spatial light modulator (SLM) to display a hologram of the two-dimensional images; illumination optics in an optical path between said laser light source and said SLM to illuminate said SLM; and imaging optics to image a plane of said SLM comprising said hologram into an SLM image plane in said eye box such that the lens of the eye of an observer of said head-up display performs a space-frequency transform of said hologram on said SLM to generate an image within said observer's eye corresponding to the two-dimensional images.
Owner:LIGHT BLUE OPTICS

Systems and methods for laser texturing of surfaces of a substrate

The present application is directed to a method of modifying a surface of an article and includes irradiating pulsed laser light output at repetition rates in excess of about 1kHz, directing the laser light to a spot on the surface, and producing micro-grooved surfaces having one or more grooves formed thereon, the grooves having groove depths in the range of about 1 μm to about 100 μm.
Owner:SPECTRA PHYSICS

Laser processing method

A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
Owner:HAMAMATSU PHOTONICS KK

Method of cutting processed object

A method of cutting an object which can accurately cut the object is provided. An object to be processed 1 such as a silicon wafer is irradiated with laser light L while a light-converging point P is positioned therewithin, so as to form a modified region 7 due to multiphoton absorption within the object 1, and cause the modified region 7 to form a starting point region for cutting 8 shifted from the center line CL of the thickness of the object 1 toward the front face 3 of the object 1 along a line along which the object should be cut. Subsequently, the object 1 is pressed from the rear face 21 side thereof. This can generate a fracture from the starting point region for cutting 8 acting as a start point, thereby accurately cutting the object 1 along the line along which the object should be cut.
Owner:HAMAMATSU PHOTONICS KK

Laser light source device and laser irradiation apparatus using the same

A laser light source device includes a pump light source which emits transverse-multimode light; a plurality of resonator mirrors which define a resonator, at least part of the resonator mirrors outputting light to the outside, where the output light having plural wavelengths; a laser medium arranged in the resonator, the laser medium being pumped with the transverse-multimode light emitted from the pump light source; and a wavelength conversion element arranged in the resonator, the wavelength conversion element being irradiated with a transverse-multimode line beam of fundamental wave obtained by oscillation at the laser medium and outputting a line beam of converted wave.
Owner:SONY CORP

Light source apparatus and image display apparatus using the same

A light source apparatus includes: an excitation light source including a laser light source; a first wheel that is controlled to rotate, and includes, in a part of a surface thereof to be illuminated by excitation light emitted from the excitation light source, a phosphor layer to be excited by the excitation light; a dichroic mirror that guides fluorescence emitted from the phosphor layer of the first wheel and the excitation light to an illumination optical system; and a second wheel that is controlled to rotate, and includes a dichroic filter that transmits light having a desired wavelength component of each of the fluorescence and the excitation light output from the dichroic mirror.

Method for dicing substrate

A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
Owner:HAMAMATSU PHOTONICS KK

OLED display and touch screen

An OLED display and touch screen system includes a substrate; an OLED display including an array of individually addressable OLEDs formed on the substrate; and a touch screen including an OLED laser light emitter formed on the substrate, a light sensor formed on the substrate across the display from the light emitter, and optics located around the display above the light emitter and the light sensor for directing light emitted from the OLED laser light emitter across the display to the light sensor.
Owner:GLOBAL OLED TECH

Method of manufacturing semiconductor chip using laser light and plasma dicing

In a method in which a semiconductor wafer 1 having integrated circuits 3 formed in a plurality of chip regions and test patterns 4 formed in scribe lines 2a is divided by a plasma etching process so as to manufacture individual semiconductor chips, in the semiconductor wafer 1, a protection sheet 5 which constitutes a mask in the plasma etching process is adhered onto a front plane 1a thereof where the integrated circuits 3 have been formed; since laser light 9a is irradiated along the scribe lines 2a, only a predetermined width of the protection sheet 5 is removed so as to form a mask having a plasma dicing-purpose opening portion 5b; and also, the test patterns 4 are removed by the laser light 9a in combination with a front plane layer of the semiconductor wafer 1. As a result, the test patterns 4 can be removed in a higher efficiency and in simple steps, while the general purpose characteristic can be secured.
Owner:PANASONIC CORP

Multiple beam additive manufacturing

Systems and methods for multiple beam additive manufacturing use multiple beams of light (e.g., laser light) to expose layers of powder material in selected regions until the powder material fuses to form voxels, which form build layers of a three-dimensional structure. The light may be generated from selected light sources and coupled into an array of optical fibers having output ends arranged in an optical head in at least one line such that multiple beams are sequentially directed by the optical head to the same powder region providing multiple beam sequential exposures (e.g., with pre-heating, melting and controlled cool down) to fuse the powder region. The multiple sequential beams may be moved using various techniques (e.g., by moving the optical head) and according to various scan patterns such that a plurality of fused regions form each build layer.
Owner:IPG PHOTONICS CORP

Raman-active taggants and their recognition

An organic or organoelement, linear or branched, monomeric or polymeric composition of matter having a Raman-active component in the form of particles. The particles having a maximum dimension of 50 mum. The Raman-active compound is applied to a substrate. When the Raman-active compound is exposed to a laser light wavelength which is batochromically well beyond a spectral region of maximum absorbance of said Raman-active compound, Raman scattering can be detected.
Owner:QUANTAG SYST

Peeling method and method of manufacturing semiconductor device

There is provided a peeling method capable of preventing a damage to a layer to be peeled. Thus, not only a layer to be peeled having a small area but also a layer to be peeled having a large area can be peeled over the entire surface at a high yield. Processing for partially reducing contact property between a first material layer (11) and a second material layer (12) (laser light irradiation, pressure application, or the like) is performed before peeling, and then peeling is conducted by physical means. Therefore, sufficient separation can be easily conducted in an inner portion of the second material layer (12) or an interface thereof.
Owner:SEMICON ENERGY LAB CO LTD

Optical disk-based assay devices and methods

Optical disk-based assay devices and methods are described, in which analyte-specific signal elements are disposed on an optical disk substrate. In preferred embodiments, the analyte-specific signal elements are disposed readably with the disk's tracking features. Also described are cleavable signal elements particularly suitable for use in the assay device and methods. Binding of the chosen analyte simultaneously to a first and a second analyte-specific side member of the cleavable signal element tethers the signal-responsive moiety to the signal element's substrate-attaching end, despite subsequent cleavage at the cleavage site that lies intermediate the first and second side members. The signal responsive moiety reflects, absorbs, or refracts incident laser light. Described are nucleic acid hybridization assays, nucleic acid sequencing, immunoassays, cell counting assays, and chemical detection. Adaptation of the assay device substrate to function as an optical waveguide permits assay geometries suitable for continuous monitoring applications.
Owner:VINDUR TECH

Methods and systems for laser based real-time structured light depth extraction

Laser-based methods and systems for real-time structured light depth extraction are disclosed. A laser light source (100) produces a collimated beam of laser light. A pattern generator (102) generates structured light patterns including a plurality of pixels. The beam of laser light emanating from the laser light source (100) interacts with the patterns to project the patterns onto the object of (118). The patterns are reflected from the object of interest (118) and detected using a high-speed, low-resolution detector (106). A broadband light source (111) illuminates the object with broadband / light, and a separate high-resolution, low-speed detector (108) detects broadband light reflected from the object (118). A real-time structured light depth extraction engine / controller (110) based on the transmitted and reflected patterns and the reflected broadband light.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL

Temperature measurement and calibration platform in space vacuum environment

ActiveCN102539019ASolve the problem of large differences in measurement resultsSolve the traceability problemThermometer testing/calibrationVacuum pumpingSpace environment
The invention relates to a temperature measurement and calibration platform in space vacuum environment. The temperature measurement and calibration platform is favorable for realizing the simultaneous calibration of contact type temperature measurement and non-contact type temperature measurement, so the temperature measurement and calibration platform is served for heat vacuum and heat balance experiments of spacecrafts such as satellites, spaceship and the like. The temperature measurement and calibration platform comprises a constant temperature bath, wherein a double-sub-cavity vacuum cavity, the double-sub-cavity vacuum cavity comprises a first vacuum cavity body and a second vacuum cavity body, the first vacuum cavity body and the second vacuum cavity body are connected with a vacuum pumping device through a three-way valve, standard temperature indicator sensors are respectively arranged on the outer wall of the first vacuum cavity body and on the outer wall of the second vacuum cavity body, the standard temperature indicator sensors are connected with a temperature secondary meter, a laser light path reflecting device is arranged in the vacuum cavity of the first vacuum cavity body for calibrating a non-contact type temperature measuring system based on the tunable diode laser absorption spectrum technology, and the vacuum cavity of the second vacuum cavity body is used for accommodating a temperature sensor for calibrating a contact type temperature measuring system adopting the temperature sensor.
Owner:BEIJING DONGFANG MEASUREMENT & TEST INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products