Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2704 results about "Emissivity" patented technology

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation and it may include both visible radiation (light) and infrared radiation, which is not visible to human eyes. The thermal radiation from very hot objects (see photograph) is easily visible to the eye. Quantitatively, emissivity is the ratio of the thermal radiation from a surface to the radiation from an ideal black surface at the same temperature as given by the Stefan–Boltzmann law. The ratio varies from 0 to 1. The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre at room temperature (25 °C, 298.15 K); all real objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.

Substrate susceptors for receiving semiconductor substrates to be deposited upon and methods of depositing materials over semiconductor substrates

In one implementation, a substrate susceptor for receiving a semiconductor substrate for selective epitaxial silicon-comprising depositing thereon, where the depositing comprises measuring emissivity of the susceptor from at least one susceptor location in a non-contacting manner, includes a body having a front substrate receiving side, a back side, and a peripheral edge. At least one susceptor location from which emissivity is to be measured is received on at least one of the front substrate receiving side, the back side, and the edge. Such at least one susceptor location comprises an outermost surface comprising a material upon which selective epitaxial silicon will not deposit upon during selective epitaxial silicon depositing on a semiconductor substrate received by the susceptor for at least an initial thickness of epitaxial silicon depositing on said substrate. Other aspects and implementations are contemplated.
Owner:MICRON TECH INC

Film formation apparatus and methods including temperature and emissivity/pattern compensation

A film formation system 10 has a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, the top cover 11 has a reflective surface 13 for reflecting radiant energy back onto a substrate 19, pyrometers 405 for measuring the temperature of the substrate 19 across a number of zones, and at least one emissometer 410 for measuring the actual emissivity of the substrate 19. In another embodiment, a radiant heating system 313 is disposed under the substrate support 16. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 405, and the emissometer 410.
Owner:APPLIED MATERIALS INC

Increased tool utilization/reduction in mwbc for UV curing chamber

A pump liner is used to direct a laminar flow of purge gas across a workpiece to remove contaminants or species outgassed or otherwise produced by the workpiece during processing. The pump liner can take the form of a ring having a plurality of injection ports, such as slits of a variety of shapes and / or sizes, opposite a plurality of receiving ports in order to provide the laminar flow. The flow of purge gas is sufficient to carry a contaminant or outgassed species from the processing chamber in order to prevent the collection of the contaminants on components of the chamber. The pump liner can be heated, via conduction and irradiation from a radiation source, for example, in order to prevent the condensation of species on the liner. The pump liner also can be anodized or otherwise processed in order to increase the emissivity of the liner.
Owner:APPLIED MATERIALS INC

Field emitter based electron source with minimized beam emittance growth

A system and method for limiting emittance growth in an electron beam is disclosed. The system includes an emitter element configured to generate an electron beam and an extraction electrode positioned adjacent to the emitter element to extract the electron beam out therefrom, the extraction electrode including an opening therethrough. The system also includes a meshed grid disposed in the opening of the extraction electrode to enhance intensity and uniformity of an electric field at a surface of the emitter element and an emittance compensation electrode (ECE) positioned adjacent to the meshed grid on the side of the meshed grid opposite that of the emitter element and configured to control emittance growth of the electron beam.
Owner:GENERAL ELECTRIC CO

Non-contact medical thermometer with stray radiation shielding

A non-contact infrared (IR) thermometer for measuring temperature from the surface of an object includes an IR radiation sensor attached to a heating element and a thermal shield having an interior surface positioned within the sensor's field of view that has a high emissivity. An electronic circuit controlling the heating element maintains the temperatures of the sensor and shield substantially close to an anticipated surface temperature of the object. The IR radiation sensor is further thermally coupled to a reference temperature sensor. An optical system positioned in front of the shield focuses thermal radiation from the object on the surface of the sensor, while the shield prevents stray radiation from reaching the sensor. Signals from the IR and reference sensors are used to calculate the object's surface temperature.
Owner:HELEN OF TROY LIMITED

Articles including anticondensation and/or low-E coatings and/or methods of making the same

Certain example embodiments of this invention relate to articles including anticondensation and / or low-E coatings that are exposed to an external environment, and / or methods of making the same. In certain example embodiments, the anticondensation and / or low-E coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator / freezer doors, and / or the like.
Owner:GUARDIAN GLASS LLC

Apparatus and method for high energy photodynamic therapy of acne vulgaris and seborrhea

An apparatus and method for the phototherapy of different skin conditions, particularly acne vulgaris and seborrhea. The invention transporting compounds, and / or a methylene blue solution. The apparatus includes at least one narrow spectral band light source with spectral emittance concentrated in the violet / blue spectral band and an optical system for controlling spectra and beam parameters of said light source and a mechanical fixture for holding the said light source at an adjustable distance and direction related to the skin treated area, and an electonic unit to control the duration and power and spectral bands of the emitted radiation.
Owner:CURELIGHT

Method to selectively heat semiconductor wafers

A method for manufacturing integrated circuits; particularly, a method to alter heat flow on a localized basis, when heating wafers to elevated temperatures, to achieve different processing temperatures by altering the material properties, such as emissivity, absorptivity and reflectivity, of a portion of a surface by the application of thin films of various materials.
Owner:LUCENT TECH INC +1

Method of manufacturing a light filament from carbon nanotubes

A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures. A method for making a light filament made of carbon nanotubes includes the steps of: forming an array of carbon nanotubes (20); pulling out carbon nanotube yarn (204) from the carbon nanotube array; and winding the yarn between two leads (30) functioning as electrodes to form the light filament.
Owner:HON HAI PRECISION IND CO LTD +1

Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors

A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.
Owner:LOCKHEED MARTIN ENERGY SYST INC

Aluminum chip dryers

In accordance with one aspect of an exemplary embodiment, a dryer for removing hydrocarbons and / or moisture from metal chips is provided. The dryer has a chamber including a top portion and a base portion. The top portion is comprised of a material having a higher emissivity than the material forming the base portion. A burner is provided which introduces heated gas into the top portion. A device for transporting the metal chips is provided in the base portion. The device receives the metal chips at an inlet and transporting the metal chips to an outlet.
Owner:PYROTECK INC

Temporal artery temperature detector

InactiveUS7346386B2Convenient temperature readingDoubles assuranceThermometer detailsSensing radiation from moving bodiesBody temperature measurementRadiation sensor
Body temperature measurements are obtained by scanning a thermal radiation sensor across the side of the forehead over the temporal artery. A peak temperature measurement is processed to compute an internal temperature of the body as a function of ambient temperature and the sensed surface temperature. The function includes a weighted difference of surface temperature and ambient temperature, the weighting being varied with target temperature through a minimum in the range of 96° F. and 100° F. The radiation sensor views the target surface through an emissivity compensating cup which is spaced from the skin by a circular lip of low thermal conductivity.
Owner:EXERGEN CORPORATION

Thermal protective coating for ceramic surfaces

A coating admixture, method of coating and substrates coated thereby, wherein the coating contains colloidal silica, colloidal alumina, or combinations thereof; a filler such as silicon dioxide, aluminum oxide, titanium dioxide, magnesium oxide, calcium oxide and boron oxide; and one or more emissivity agents such as silicon hexaboride, carbon tetraboride, silicon tetraboride, silicon carbide, molybdenum disilicide, tungsten disilicide, zirconium diboride, cupric chromite, or metallic oxides such as iron oxides, magnesium oxides, manganese oxides, chromium oxides, copper chromium oxides, cerium oxides, terbium oxides, and derivatives thereof. In a coating solution, an admixture of the coating contains water. A stabilizer such as bentonite, kaolin, magnesium alumina silicon clay, tabular alumina and stabilized zirconium oxide is also added.
Owner:WESSEX

Method of making coated articles and coated articles made thereby

A method of making a coated substrate includes providing a substrate having a functional coating with a first emissivity value; depositing a coating material having a second emissivity value over at least a portion of the functional coating prior to heating to provide a coating stack having an emissivity value greater than the emissivity value of the functional coating; and heating the coated substrate.
Owner:VITRO FLAT GLASS LLC

Non-contacting temperature sensing device

The device according to the invention provides a non-contacting temperature sensing device incorporating micro-bolometric detectors as the suitable infrared sensors for automotive applications. A first and second infrared sensors each include an active infrared sensing element and a temperature drift compensating element. A current bias is applied to the active infrared sensing element as well as to the temperature drift compensating element, which is identical in structure with the active infrared sensing element, and the voltage outputs of these two elements pass through a differential amplifier. The fluctuation in the substrate temperature or the ambient temperature affects the active sensing element and the compensating element in the same way, thus it is cancelled out. Instead of using one spectral band of the infrared radiation, as in the prior art, two spectral bands are used resulting in a first and second signal generated by the first and second infrared sensors. A ratio of the first and second signals is obtained. The ratio of the signals is emissivity independent, so that the device of the present invention provides a more accurate measurement of temperature. The need to compensate for window contamination is also eliminated by this two band approach. The filtering elements for the two bands can be multi-layer thin film filters either coated on flat windows or on diffractive micro-lenses. The use of diffractive micro-lenses further reduces the size of the device, and eliminates the need for a separate optical lens.
Owner:MONTEREY RES LLC +1

Method and device for monitoring oil oxidation in real time by measuring fluorescence

There is provided a method and a device of monitoring oil oxidation in real time. The method of the present invention comprises the steps of: irradiating ultraviolet light into oil to be monitored; measuring fluorescence emission intensity of the oil in red, green and blue wavelength bands; determining one value measured in a relatively long wavelength band and the other value measured in a relatively short wavelength band among the fluorescence emission intensity measured in the red, green and blue wavelength bands; calculating a fluorescence emission ratio which is defined as a ratio of the value measured in the relatively long wavelength band to the value measured in the relatively short wavelength band; and monitoring a change in the fluorescence emission ratio. It is then determined whether the fluorescence emission ratio reaches a predetermined critical magnitude. When the fluorescence emission ratio reaches the critical magnitude, the necessity of replacing the oil with new one is indicated.
Owner:KOREA INST OF SCI & TECH

Air conditioner device with trailing electrode

An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and / or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissitivity.
Owner:THE SHARPER IMAGE

Method and apparatus for alignment, comparison and identification of characteristic tool marks, including ballistic signatures

Systematic use of infrared imaging characterizes marks made on items and identifies the particular marking tool with better accuracy than use of visual imaging. Infrared imaging performed in total darkness eliminates shadows, glint, and other lighting variations and artifacts associated with visible imaging. Although normally used to obtain temperature measurements, details in IR imagery result from emissivity variations as well as thermal variations. Disturbing an item's surface texture creates an emissivity difference producing local changes in the infrared image. Identification is most accurate when IR images of unknown marks are compared to IR images of marks made by known tools. However, infrared analysis offers improvements even when only visual reference images are available. Comparing simultaneous infrared and visual images of an unknown item, such as bullet or shell casing, can detect illumination-induced artifacts in the visual image prior to searching the visual database, thereby reducing potential erroneous matches. Computer numerically controlled positioning of the toolmark relative to imaging sensors which use fixed focus optics with shallow depth of focus, varying focus distance and orientation systematically to construct a sequence of images, maximizes reliability of resulting images and their comparisons.
Owner:PROKOSKI FRANCINE J

Modified chinlon fiber, preparation method and application

The invention relates to a modified chinlon fiber, a preparation method and application. Even dispersion of graphene particles in a chinlon base material is achieved through a physical method, the process is simple, no dispersing agent is needed, and industrial production is easy. Graphene, especially biomass graphene is introduced into chinlon, so that the modified chinlon fiber has a low-temperature far infrared function, and the far infrared normal emissivity of the modified chinlon fiber is 0.85 or above. The antibacterial property of the modified chinlon fiber is 90% or above, and the mechanical strength and breathability are excellent.
Owner:JINAN SHENGQUAN GROUP SHARE HLDG

Solar selective coating having higher thermal stability useful for harnessing solar energy and a process for the preparation thereof

The present invention provides an improved solar selective multilayer coating having higher thermal stability and a process for the preparation thereof. Solar selective coatings having higher thermal stability are useful in solar steam generation, solar steam turbines to produce electricity and also on automobile engine components. In the present invention, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates at room temperature using a planar reactive direct current magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings of the present invention deposited on copper substrates are stable in air up to a temperature of 625° C. for a duration of 2 hours and exhibit higher solar selectivity in the order of 9-10 and these coating also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. Coatings deposited on copper substrates showed no significant degradation in the optical properties even after continuous heating in air at 525° C. for 50 hours. The solar selective coatings of the present invention exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Owner:COUNCIL OF SCI & IND RES

Thermal protective coating for ceramic surfaces

A coating admixture, method of coating and substrates coated thereby, wherein the coating contains colloidal silica, colloidal alumina, or combinations thereof; a filler such as silicon dioxide, aluminum oxide, titanium dioxide, magnesium oxide, calcium oxide and boron oxide; and one or more emissivity agents such as silicon hexaboride, carbon tetraboride, silicon tetraboride, silicon carbide, molybdenum disilicide, tungsten disilicide, zirconium diboride, cupric chromite, or metallic oxides such as iron oxides, magnesium oxides, manganese oxides, chromium oxides, copper chromium oxides, cerium oxides, terbium oxides, and derivatives thereof. In a coating solution, an admixture of the coating contains water. A stabilizer such as bentonite, kaolin, magnesium alumina silicon clay, tabular alumina and stabilized zirconium oxide is also added.
Owner:WESSEX

Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability

An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The airflow is subjected to UV radiation from a germicidal lamp within the device. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. The device can also include a third or leading or focus electrode located upstream of the first array of emitter electrodes, and / or a trailing electrode located downstream of the second array of collector electrodes, and / or an interstitial electrode located between collector electrodes, and / or an enhanced emitter electrode with an enhanced length in order to increase emissivity.
Owner:SHARPER IMAGE ACQUISITION LLC A DELAWARE LIMITED LIABILITY

Thermal protective coating

A coating, method of coating and substrates coated thereby, wherein the coating contains an inorganic adhesive such as an alkali / alkaline earth metal silicate such as sodium silicate, potassium silicate, calcium silicate, and magnesium silicate; a filler such as a metal oxide for example silicon dioxide, aluminum oxide, titanium dioxide, magnesium oxide, calcium oxide and boron oxide; and one or more emissivity agents such as silicon hexaboride, carbon tetraboride, silicon tetraboride, silicon carbide, molybdenum disilicide, tungsten disilicide, zirconium diboride, cupric chromite, or metallic oxides such as iron oxides, magnesium oxides, manganese oxides, chromium oxides and copper chromium oxides, and derivatives thereof. In a coating solution, an admixture of the coating contains water. A stabilizer such as bentonite, kaolin, magnesium alumina silicon clay, tabular alumina and stabilized zirconium oxide may be added.
Owner:WESSEX

Functional fiber and its manufacturing method

The invention relates to a functional fiber and its manufacturing method, where the functional fiber has a skin-core structure, the weight ratio of skin to core 3 / 7 - 7 / 3; and the formula of the skin materials in weight percent comprises: skin polymer 91.6-97.6%, far infrared powder 2-8%, and coupling agent 0.1-0.4%; the skin polymer is one of PTT, PBT, PA-6, PET and PP with fusion index of 25-50; the coupling agent is one of gama-shink glycerol oxy propyl trimethoxy silane, gama-methyl propylene acyl oxy trimethoxy silane, N-beta-(amido ethyl)-gama amido propyl trimethoxy silane, and gama-amido propyl triethoxy silane; and the formula of the core-layer materials in weight percent comprises: core-layer polymer 88-99%, and flavor 1-12%; wherein the core-layer polymer is one of PE, PP and PET with melting point of 150-200 deg.C. The fiber of the invention has far infrared emissivity of 81-86%, very strong spicery and is a synthetic health functional fiber.
Owner:TIANJIN POLYTECHNIC UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products