Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11450 results about "Oxidation resistance" patented technology

Oxidation Resistance. (resistance to sealing), the ability of metallic materials to resist chemical degradation of the surface caused by the action of air or other gaseous mediums at high temperatures.

Cherry and tomato composite beverage and preparation method thereof

The invention discloses a cherry and tomato composite beverage and a preparation method thereof. The cherry and tomato composite beverage is prepared from the following raw materials, by weight, 30-45 parts of cherry, 15-20 parts of tomato, 10-15 parts of guava, 10-14 parts of pitaya peel, 10-15 parts of buckwheat, 14-18 parts of red glutinous rice, 1-3 parts of stevioside, 2-3 parts of very precious flower in Plateau Snow Mountain, 2-4 parts of ginseng fruit, 3-5 parts of grapefruit flower, 1-2 parts of flower of Intermediate peashrub, 1-2 parts of Japanese metaplexis, 12-18 parts of setose abelmoschus, a proper amount of rose wine, and 8-10 parts of a nutrient solution. The cherry and tomato composite beverage prepared in the invention maximally reserves nutritional components of cherry and tomato, has the characteristics of red and uniform color, aroma, sweet and delicious taste, smooth mouthfeel, abundant and balanced nutrition, and simple and feasible technology, has the efficacies of body fluid production promoting, thirst quenching, stomach strengthening, food digesting, pressure reducing, lipid lowering, heat clearing, detoxifying, toxin expelling and face nourishing through the synergistic effect with health care components of traditional Chinese medicines, and can promote digestion, enhance muscle power and improve the oxidation resistance of human bodies through long term drinking.
Owner:徐九山

Graphene coating as well as preparation method and coating method thereof

The invention belongs to the technical field of materials and in particular relates to a graphene coating as well as a preparation method and a coating method thereof. The graphene coating is prepared from the components by weight: 5-95wt percent of less layer of grapheme, 5-95wt percent of adhesive, 0.01-50wt percent of dispersant and surfactant, 0.01-10wt percent of defoamer and the balance of solvent. With the adoption of the graphene coating, the thickness of an electricity and heat conductive coating can be controlled to be 100nm-20 microns; when the graphene coating is used on a plastic matrix, the volume resistivity can reach a range from 10<-2>ohm.cm to 10<-4>ohm.cm; while the graphene coating is used on a metal matrix, the volume resistivity can reach 10<-6>ohm.cm. The graphene coating can be applied to the metal surface so as to improve the cohesiveness, the electricity/heat conduction performance and the corrosion and oxidation resistance. When the graphene coating is coated on the plastic surface, the frictional resistance, the electricity and heat conduction performances and the static resistance can be lowered, and the graphene coating can be applied to the fields of printed circuits, electronic devices, radio frequency devices, touch screens, thin film solar energy, LEDs, magnetic shielding, radio frequency shielding and the like.
Owner:SUPERCDONGGUAN TECH

Solar selective coating having higher thermal stability useful for harnessing solar energy and a process for the preparation thereof

The present invention provides an improved solar selective multilayer coating having higher thermal stability and a process for the preparation thereof. Solar selective coatings having higher thermal stability are useful in solar steam generation, solar steam turbines to produce electricity and also on automobile engine components. In the present invention, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates at room temperature using a planar reactive direct current magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings of the present invention deposited on copper substrates are stable in air up to a temperature of 625° C. for a duration of 2 hours and exhibit higher solar selectivity in the order of 9-10 and these coating also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. Coatings deposited on copper substrates showed no significant degradation in the optical properties even after continuous heating in air at 525° C. for 50 hours. The solar selective coatings of the present invention exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Owner:COUNCIL OF SCI & IND RES

Black surface treatment process of electrolytic copper foil

The invention relates to a black surface treatment process of an electrolytic copper foil, belonging to the technical field of production processes of high and precision electrolytic copper foils. The black surface treatment process of an electrolytic copper foil is characterized in that a VLP (Very Low Profile) electrolytic copper foil of 8-12 mu m is used as an electrode, and then copper or copper alloy is roughened, solidified, weakly roughened and electrically deposited at a running speed of 25.0+/-0.1m/min; a layer of nano-scale nickel or cobalt alloy and a layer of nano-scale zinc alloy are sequentially and electrically deposited; and then alkaline chromate passivation is carried out and a layer of coupling agent is coated. In the invention, the black copper foil for an FPC (Flexible Printing Circuit) is obtained by carrying out a series of special surface treatments on the ultrathin and VLP electrolytic copper foil of 8-12 mu m, wherein the surface roughness Ra of the obtained copper foil is smaller than or equal to 0.30 mu m, Rz is smaller than or equal to 2.5 mu m; the thickness of the copper foil subjected to the surface treatments is increased by 1.40-1.80 mu m; the copper foil does not contain elements having serious damages to the human body, such as lead, mercury, cadmium, stibium, and the like and has excellent oxidation resistance as well as corrosion and etching resistance; the peel strength of the copper foil on a PI (Polyimide) film reaches higher than 1.0N/mm, and the folding strength on the PI film reach more than 100 thousand numbers of times; the copper foil has good appearance characteristics after the copper foil is microetched, and after the copper foil is made into an FCCL (Flexible Copper Clad Laminate), the copper foil has similar appearance characteristics to a rolled copper foil; and the properties of the copper foil product are equivalent to that of an electrolytic copper foil with the same specification for the FCCL.
Owner:SHANDONG JINBAO ELECTRONICS

Hard-material-coated bodies and method for their production

The invention relates to hard-coated bodies with a single- or multi-layer system containing at least one Ti1-xAlxN hard layer and a method for production thereof. The aim of the invention is to achieve a significantly improved wear resistance and oxidation resistance for such hard-coated bodies. Said hard-coated bodies are characterised in that the bodies are coated with at least one Ti1-xAlxN hard layer, generated by CVD without plasma stimulation present as a single-phase layer with cubic NaCl structure with a stoichiometric coefficient x>0.75 to x=0.93 and a lattice constant afcc between 0.412 nm and 0.405 nm, or as a multi-phase layer, the main phase being Ti1-xAlxN with a cubic NaCl structure with a stoichiometric coefficient x>0.75 to x=0.93 and a lattice constant afcc between 0.412 nm and 0.405 nm, with Ti1-xAlxN with a wurtzite structure and / or as TiNx with NaCl structure as further phase. Another feature of said hard layer is that the chlorine content is in the range of only 0.05 to 0.9 atom %. The invention further relates to a method for production of the body, characterised in that the body is coated in a reactor at temperatures from 700° C. to 900° C. by means of CVD without plasma stimulation with titanium halides, aluminium halides and reactive nitrogen compounds as precursors, mixed at elevated temperatures. Said coating can be applied to tools made from steel, hard metals, cermets and ceramics, such as drills, millers and indexable inserts.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Material adopting thin graphene and metal powder composite structure, preparation method and application thereof

The invention discloses a material adopting a thin graphene and metal powder composite structure, a preparation method and an application thereof. The material adopting the composite structure comprises metal powder bridged by and coated with thin graphene. The preparation technology of the material comprises the steps as follows: mixing transition metal powder or reduced transition metal powder with the thin graphene, and growing the thin graphene on the surface of the transition metal powder through CVD (chemical vapor deposition) and coating the surface of the transition metal powder with the thin graphene, so as to obtain the metal powder bridged by and coated with the thin graphene; or growing the thin graphene on the surface of the transition metal powder through the CVD, and then compositing the metal powder with the thin graphene to obtain a target product. The invention has the advantages that the technology is simple; the oxidation resistance and the corrosion prevention of the metal powder can be enhanced, meanwhile, the metal powder has good heat conduction, antistatic and electromagnetic shielding properties, the service life of the metal powder can be prolonged, and the cost can be reduced; and besides, the material has a wide application prospect in antistatic performance, thermal management, heat conduction and radiation, electromagnetic shielding, catalysts, sintering activators, electro-conduction slurry, batteries, cemented carbide and the like.
Owner:苏州格瑞丰纳米科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products