Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2151 results about "Melt temperature" patented technology

A melting point is essentially a set temperature that an element has where it begins to melt. Ice for example, begins to melt at 32° Fahrenheit. On the other hand, iron has a melting point of about 2,800° Fahrenheit.

Metal attachment method and structure for attaching substrates at low temperatures

A high density integrated circuit structure and method of making the same includes providing a first silicon substrate structure having semiconductor device formations in accordance with a first circuit implementation and metal interlevel lines disposed on a top surface thereof and a second silicon substrate structure having a second circuit implementation and metal interlevel lines disposed on a top surface thereof. The first substrate structure includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from is the low-K dielectric, the metal interlevel lines of the first silicon substrate structure have a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. The second substrate structure also includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines having a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. Lastly, the first substrate structure is low temperature bonded to the second substrate structure at respective metal interlevel lines of the first and second substrate structures.
Owner:ADVANCED MICRO DEVICES INC

Method of multiple pulse laser annealing to activate ultra-shallow junctions

A method for forming a highly activated ultra shallow ion implanted semiconductive elements for use in sub-tenth micron MOSFET technology is described. A key feature of the method is the ability to activate the implanted impurity to a highly active state without permitting the dopant to diffuse further to deepen the junction. A selected single crystalline silicon active region is first amorphized by implanting a heavy ion such as silicon or germanium. A semiconductive impurity for example boron is then implanted and activated by pulsed laser annealing whereby the pulse fluence, frequency, and duration are chosen to maintain the amorphized region just below it's melting temperature. It is found that just below the melting temperature there is sufficient local ion mobility to secure the dopant into active positions within the silicon matrix to achieve a high degree of activation with essentially no change in concentration profile. The selection of the proper laser annealing parameters is optimized by observation of the reduction of sheet resistance and concentration profile as measured on a test site. Application of the method is applied to forming a MOS FET and a CMOS device. The additional processing steps required by the invention are applied simultaneously to both n-channel and p-channel devices of the CMOS device pair.
Owner:CHARTERED SEMICONDUCTOR MANUFACTURING

Metal attachment method and structure for attaching substrates at low temperatures

A high density integrated circuit structure and method of making the same includes providing a first silicon substrate structure having semiconductor device formations in accordance with a first circuit implementation and metal interlevel lines disposed on a top surface thereof and a second silicon substrate structure having a second circuit implementation and metal interlevel lines disposed on a top surface thereof. The first substrate structure includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines of the first silicon substrate structure have a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. The second substrate structure also includes a planarized low-K dielectric disposed between the metal interlevel lines and a protective coating separating the metal interlevel lines from the low-K dielectric, the metal interlevel lines having a melting temperature on the order of less than 500 DEG C. and the low-K dielectric having a dielectric K-value in the range of 2.0-3.8. Lastly, the first substrate structure is low temperature bonded to the second substrate structure at respective metal interlevel lines of the first and second substrate structures.
Owner:ADVANCED MICRO DEVICES INC

Stabilized Hme Composition With Small Drug Particles

A hot-melt extruded composition having finely divided drug-containing particles dispersed within a polymeric and/or lipophyllic carrier matrix is provided. The carrier softens or melts during hot-melt extrusion but it does not dissolve the drug-containing particles during extrusion. As a result, a majority or at least 90% wt. of the drug-containing particles in the extrudate are deaggregated during extrusion into essentially primary crystalline and/or amorphous particles. PEO is a suitable carrier material for drugs insoluble in the solid state in this carrier. Various functional excipients can be included in the carrier system to stabilize the particle size and physical state of the drug substance in either a crystalline and/or amorphous state. The carrier system is comprised of at least one thermal binder, and may also contain various functional excipients, such as: super-disintegrants, antioxidants, surfactants, wetting agents, stabilizing agents, retardants, or similar functional excipients. A hydrophilic polymer, such as hydroxypropyl methylcellulose (HPMC E15), polyvinyl alcohol (PVA), or poloxamer, and/or a surfactant, such as sodium lauryl sulfate (SLS), can be included in the composition. A process for preparing the extrudate is conducted at a temperature approximating or above the softening or melting temperature of the matrix and below the point of solubilization of drug-containing particles in the carrier system, and below the recrystallization point in the case of amorphous fine drug particles.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products