Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

907 results about "Sheet resistance" patented technology

Sheet resistance is a measure of resistance of thin films that are nominally uniform in thickness. It is commonly used to characterize materials made by semiconductor doping, metal deposition, resistive paste printing, and glass coating. Examples of these processes are: doped semiconductor regions (e.g., silicon or polysilicon), and the resistors that are screen printed onto the substrates of thick-film hybrid microcircuits.

Reversible electrochemical mirror (REM) state monitoring

Reversible electrochemical mirror (REM) devices typically comprise a conductive oxide mirror electrode that is substantially transparent to radiation of some wavelengths, a counter electrode that may also be substantially transparent, and an electrolyte that contains ions of an electrodepositable metal. A voltage applied between the two electrodes causes electrodeposition of a mirror deposit on the mirror electrode and dissolution of the mirror deposit on the counter electrode, and these processes are reversed when the polarity of the applied voltage is changed. Such REM devices provide precise control over the reflection and transmission of radiation and can be used for a variety of applications, including smart windows and automatically adjusting automotive mirrors. According to the present invention, measurements of the sheet resistance of the mirror electrode in a REM device are correlated with the thickness of electrodeposited mirror metal and can be used to monitor the reflectance of the device. Sheet resistance measurements can be performed while the mirror state of the device is being switched if adequate isolation between the measurement and switching circuits is provided. This can be accomplished by use of external resistors or more sophisticated circuitry, or by taking advantage of the relatively high sheet resistance of the mirror electrode itself. Monitoring the reflectance of REM devices according to this invention provides significant cost and performance advantages.

Optical resonator type organic electroluminescent element

An optical resonator type organic electroluminescent element has a multilayered film mirror 30, a transparent electrode 12, an electron hole transportation layer 14 and a luminescent layer 16 configuring an organic layer, and a metallic electrode mirror 20, formed on a glass substrate 10. The optical resonator type organic electroluminescent element amplifies a specific wavelength (especially, in a range of about 30 nm toward a shorter wavelength side from a luminescence peak wavelength of the organic layer) in luminescence light by a minute optical resonator, which comprises the multilayered film mirror 30 and the metallic electrode mirror 20. It is determined that the minute optical resonator has an optical length L which is twice as long as a resonance wavelength, the organic layer has a thickness of 100 nm or more, and the transparent electrode has a thickness of 50 nm or more or a thickness so to have a sheet resistance of 30 OMEGA/square or less. Thus, the transparent electrode can be prevented from generating heat even when a large current is caused to flow into it, and the element characteristics can be reliably prevented from being deteriorated. Moreover, the reliability of this element can be improved because the organic layer containing the luminescent layer has a sufficient thickness.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products