Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7963 results about "High conductivity" patented technology

High conductivity is related to high TDS (total dissolved solids) concentration in water, amount of dissolved mineral salts in water. Conductivity meters that measure conductivity also aim to measure the TDS of the sample for producing the result.

Low-loss inductive couplers for use in wired pipe strings

A first flux-loop inductive coupler element electrically couples with a second flux-loop inductive coupler element. The first flux-loop inductive coupler element comprises a first ring-like core having high magnetic permeability and a conical-section annular first face transverse to the plane of the first core. The first face has a first annular groove separating a first conical-section larger-diameter face and a first conical-section smaller-diameter face. A first coil is wound within the annular groove. The first and second cores form a low-reluctance closed magnetic path around the first coil and a second coil of the second flux-loop inductive coupler element.
A first current-loop inductive coupler element electrically couples with a second current-loop inductive coupler element. The first current-loop inductive coupler element has a first high-conductivity, low-permeability shaped belt of a first end of a first pipe joint, a first ring-like core located at the first end, and a first electrically conductive coil wound about the first ring-like core. The first high-conductivity, low-permeability shaped belt partially encloses the first coil. It is shaped to cooperate with the second high-conductivity, low-permeability shaped belt of an adjacent second pipe joint having a second electrically conductive coil and a second high-conductivity, low-permeability shaped belt to create a closed toroidal electrical conducting path. The closed toroidal electrical conducting path encloses the first coil and the second coil when the first and second pipe joints are mated.
Owner:SCHLUMBERGER TECH CORP

Graphene composite material and preparation method thereof

The invention relates to a graphene composite material and a preparation method thereof. The graphene composite material provided by the invention is characterized in that a graphene material plate fixed on a metallic matrix serves as a carrier, and the elementary substance and/or a compound are compounded on the graphene surface. Meanwhile, the invention also discloses a method for preparing the graphene composite material. The graphene composite material prepared by the invention is opened between graphene sheets and is compounded with a chemical substance under the condition that a space body structure is formed, and the obtained material has high conductivity, high specific surface area and excellent performance of low electrical resistivity between the sheets, and can be widely applied to the fields of energy storage materials such as lithium ion batteries, super-capacitors, super lead carbon batteries, super nickel-carbon electrodes, solar energy and fuel cells, the field of heat dissipation materials, the field of environment-friendly adsorbing materials, the field of sea water desalination materials, the field of photoelectric sensor materials, the biological relevance field, the field of catalyst materials and the fields of conductive ink and coating materials.
Owner:YANCHENG TEACHERS UNIV

Co-N-C@RGO composite material, preparation method and application to modification of lithium-sulfur battery diaphragms

The invention discloses a method for preparing porous carbon@graphene composite material by taking a bimetal organic framework material as a precursor and application to modification of lithium-sulfur battery diaphragms thereof. The preparation method comprises the following steps: taking zinc salt and cobalt salt in a certain ratio as the raw materials, synthesizing a zinc / cobalt-bimetal organic framework@graphene composite material through a room-temperature liquid phase method, taking the zinc / cobalt-bimetal organic framework@graphene composite material as the precursor, carrying out high-temperature reaction under inert atmosphere, pickling and drying to obtain a cobalt / nitrogen double-doped porous carbon@graphene (Co-N-C@RGO) composite material. Co-N-C@RGO has high conductivity; the specific surface area of Co-N-C@RGO reaches up to 750-1000m<2> / g; the content of Co is 2-4At%; the content of N is 10-20At%. When the material is applied to the modification of the lithium-sulfur battery diaphragms, the material has the function of obviously inhibiting polysulfide shuttle effect and is capable of greatly improving actual specific capacity and cyclic performance of the lithium-sulfur batteries; meanwhile, the raw materials needed for synthesizing the material are simple; the operation is convenient; the large-scale production can be achieved; the material has certain promoting effect on commercialization of lithium-sulfur battery systems.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products