Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1939 results about "Contact time" patented technology

Method for removing organic matters in water by utilizing three-dimensional electrode electro-fenton and device thereof

The invention relates to a method for carrying out oxidation treatment on organic waste water by utilizing a three-dimensional electrode electro-fenton and a device thereof. The device comprises a reactor shell, a carbon material cathode, an iron plate anode, a three-dimensional particle electrode of a fixed bed, a direct-current voltage-stabilizing power supply, a microporous aeration plate and an air pump, wherein a reactor consists of a reaction chamber and a gas chamber; the carbon material cathode, the iron plate anode and the particle electrode are positioned in the reaction chamber at the upper part of the reactor; and the gas chamber is formed between the bottom of the reactor and the microporous aeration plate. After direct current is introduced, the iron anode is oxidized to generate iron ions, oxygen in the gas chamber is reduced on the surface of the cathode to generate hydrogen peroxide, and the iron ions and the hydrogen peroxide form a fenton reagent to oxidize and remove organic matters in waste water; and simultaneously, due to the particle electrode, the contact area and the contact time of the waste water and the fenton reagent are increased, and the mass transfer effect of the waste water in the reactor is reduced. The invention is applicable to treatment of various types of organic waste water, the equipment is compact, the operation is easy, the whole reactor is easy to control, and the requirements of an actual water treatment unit are met.
Owner:HUAZHONG NORMAL UNIV

Dielectric barrier discharge water treatment device and method

The invention provides a dielectric barrier discharge water treatment device and method, belonging to the technical field of a water treatment device and method. The device comprises a high-voltage high-frequency pulse power supply, a reactor shell, a column high-voltage electrode, a cylindrical submerged low-voltage electrode, a vermiculite-supported titanium dioxide catalyst, a dielectric barrier layer and a microporous aeration membrane. The method comprises the following steps: adding a solution to be treated, and applying a high-voltage pulse voltage between the column high-voltage electrode and the cylindrical submerged low-voltage electrode, wherein the peak voltage is 1-100kV, and the frequency is 1-50KHz; and adjusting the inlet air quantity, and regulating the contact time between treated wastewater and active particles inside the reactor. An aerator is introduced into the water treatment device, and medium-activity substances generated by dielectric barrier plasma discharge can completely enter the solution to the treated through the aerator, so the water treatment device has the advantages of high mass-transfer efficiency and short required time; the method is stable in running and simple to operate, and can run under atmospheric pressure; and the equipment is easy to manage and has high practicality and economical efficiency.
Owner:TAIYUAN UNIV OF TECH

Method for producing MnO2 supported catalyst as well as method of using the same and apparatus for treating waste water

The invention discloses a method for preparing MnO2 supported catalysts, an application method thereof and a wastewater treatment device. The preparation method comprises the following steps: manganese acetate is prepared into a solution; one of activated carbon, active aluminium sesquioxide, white silica gel, a molecular sieve, zeolite or diatomite is taken as a carrier and dipped in the solution; and supported solid catalysts are prepared through dipping, evaporation, concentration, drying and roasting. A reactor of the wastewater treatment device is divided into a plurality of reaction spaces by baffles, and the catalysts exist as fluidized beds on every baffle. When the MnO2 supported catalysts prepared by the method are used in the reaction of degrading refractory organic matter through ozone catalytic oxidation, the contact time among the MnO2 supported catalysts, wastewater and ozone is between10 and 120 minutes, and the mass ratio of the adding amount of the catalysts to the wastewater in the reaction is between 1 to 200 and 1 to 20. The MnO2 supported catalysts prepared by the method have the characteristics of easy recovery, high repeat utilization property and high efficiency of catalyzing and degrading refractory organic matters.
Owner:GUANGDONG UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products