Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10906 results about "Catalytic oxidation" patented technology

Catalytic oxidation are processes that oxidize compounds using catalysts. Common applications involve oxidation of organic compounds by the oxygen in air. Such processes are conducted on a large scale for the remediation of pollutants, production of valuable chemicals, and the production of energy.

Catalyst for complete oxidation of formaldehyde at room temperature

The invention provides a high selectivity catalyst used for catalyzing and completely oxidizing formaldehyde with low concentration at room temperature. The catalyst can catalyze formaldehyde completely so as to lead the formaldehyde to be converted into carbon dioxide and water at room temperature. In addition, the conversion rate of formaldehyde remains 100% within a long period of time, without complex auxiliary facilities such as light source, a heating oven and the like, and external conditions. The catalyst comprises three parts which are inorganic oxide carrier, noble metal component and auxiliary ingredient. Porous inorganic oxide carrier is one of cerium dioxide, zirconium dioxide, titanium dioxide, aluminium sesquioxide, tin dioxide, silicon dioxide, lanthanum sesquioxide, magnesium oxide and zinc oxide or the mixture thereof or composite oxide thereof, zeolite, sepiolite and porous carbon materials. The noble metal component of the catalyst is at least one of platinum, rhodium, palladium, gold and silver. The auxiliary ingredient is at least one of the alkali metals of lithium, sodium, kalium, rubidium and cesium. The loading of the noble metal component used in the catalyst of the invention is 0.1 to 10% according to weight converter of metal elements and the selective preference is 0.3 to 2%. The loading of the auxiliary ingredient is 0.2 to 30% according to weight converter of metal elements and the selective preference is 1 to 10%. When the loading of the auxiliary ingredient is lower than 0.2% or higher than 30%, the activity of the catalyst for catalyzing and oxidizing formaldehyde at room temperature is decreased remarkably.
Owner:广东顺德中科鸿图环境材料有限公司

Catalytic oxidation process

A process for the partial catalytic oxidation of a hydrocarbon containing feed comprising contacting the feed with an oxygen-containing gas in the presence of a catalyst retained within a reaction zone in a fixed arrangement, wherein the catalyst comprises at least one catalytically active metal selected from the group consisting of silver and Group VIII elements supported on a porous ceramic carrier. The porous ceramic carrier has a distribution of total pores wherein about 70% of the total pores (1) have a volume-to-surface area (V/S) ration that is within about 20% of the mean V/S value for the total pores and no pores have a V/S ration that is greater than twice the mean V/S value for the total pores; (2) have a pore-to-pore distance between neighboring pores that is within about 25% of the mean pore-to-pore distance between neighboring pores; and (3) have a pore throat area that is within about 50% of the mean pore throat are for the pores. Additionally, about 50% of the total pores have a coordination number between neighboring pores that is within about 25% of the mean coordination number between neighboring pores. Preferably, the oxidation process comprises a multistage, staged oxygen, catalytic partial oxidation process having fewer than or equal to about five stages and including a first stage preheat temperature of greater than about 550° C., and wherein the temperature of the product mixture in each stage following the first stage is at least about 700° C.
Owner:EXXON RES & ENG CO

Ultrasonic combined waste water treatment process and system of refuse leachate

The invention relates to an ultrasonic combined waste water treatment process of refuse leachate, relating to the technical field of waste water treatment and recycling of resources and environmental protection. The ultrasonic combined waste water treatment process of the refuse leachate comprises the following steps of: enabling waste water to enter a regulating pond; treating colloids, amphoteric substances and heavy metals in a coagulation sedimentation pond; eliminating ammonia nitrogen in an ultrasonic catalytic oxidation pond; sequentially sedimentating through biological treatment in an ABR (Acrylate Butadience Rubber) baffle plate anaerobic pond, a hydrolytic pond, a facultative pond and an aerobic pond; filtering in a CMBR (Chatter Membrane Bioreactor); eliminating waste gases and stench in a carbon filter pond; disinfecting in a contact disinfection pond; and filtering in an RO (Reverse Osmosis) membrane reverse osmosis system so as to obtain water meeting the requirements for emission standards. The invention also provides a treatment system for the ultrasonic combined waste water treatment process. The ultrasonic combined waste water treatment process and system can obtain the outflow water with stable quality by treating the refuse leachate; the treatment system has the advantages of small size and occupying area, high efficiency, low energy consumption and easy realization for mechanical-electrical integration control and management; and in addition, the invention is beneficial to the protection of the original landscapes of a construction party by adopting a non-buried type structure and also reduces the influence of the operation of the treatment system on an office area.
Owner:深圳市万山红环保实业有限公司

Technology for processing high-concentration organic wastewater in composite electrochemical method

The invention relates to a technology for processing high-concentration organic wastewater in a composite electrochemical method, which comprises the main four steps of: pH adjustment, multidimensional electrocatalytic oxidization processing, micro coupling electric fenton reaction oxidation processing and coagulating sedimentation processing. The invention has the technical advantage that the technology has good breaking, chain scission, degradation effects to benzene ring organics, heterocyclic organics, polycyclic organics, macromolecule organics and sustaining organics, which have the most difficulty to degradation. Besides, the technology has no obvious selection to various kinds of high-concentration organic wastewater, has broad-spectrum processing effect, and is an effective measurement for pre-processing to high-concentration organic wastewater having difficulty to degradation. The invention is characterized in that the technology uses second-grade electrochemical processing equipment to realize third-grade advanced oxidation combination processing, effectively utilizes H2O2 and Fe2+ generated by the second-grade electrochemical processing equipment, and makes fenton oxidated and coupled in a micro reactor. During the technological processes, the oxidation capacity is strong to weak, and has reasonable distribution. The pH valve of wastewater does not need repeatedly adjusting. The invention has the obvious characteristics of low electric consumption, little medicine consumption, high processing efficiency, and good controllability.
Owner:南京赛佳环保实业有限公司

Preparation method of homogenized fine nano-cellulose fiber

The invention relates to a preparation method of a homogenized fine nano-cellulose fiber. The preparation method can solve the problems of uniform diameter distributor of biomass nano-cellulose prepared by the existing strong acid hydrolysis method and the high-strength mechanical shearing method, easy gathering among the nano-fiber and a narrow range of applications of the TEMPO catalytic oxidation method. The preparation method comprises the following steps: 1) extracting biomass fiber with benzyl alcohol solution; 2) carrying out treatment by using acidified sodium chlorite; 3) carrying out gradient treatment with alkaline liquor; 4) using TEMPO, sodium bromide and sodium hypochlorite for catalytic oxidation treatment; 5) using sodium chlorite for treatment; and 6) carrying out nano-scale processing by using the long-term stirring method, the ultrasonic method or the high-pressure homogenization method, drying, and then obtaining the homogenized fine nano-cellulose fiber. The fiber has the uniform diameter distribution, the diameter is 3-5nm, the length-diameter ratio is not less than 500, the fiber is mutually interwoven into a mesh snarling structure, and the method is applicable to preparing the nano-cellulose fiber by using wood pulp, paper-making pulp, wood, bamboo and crop straw.
Owner:NORTHEAST FORESTRY UNIVERSITY

Supported active carbon catalytic material capable of eliminating formaldehyde at room temperature and preparation method thereof

The invention discloses a supported active carbon catalytic material capable of eliminating formaldehyde at room temperature. The catalytic material is characterized by comprising, by mass, 0.1 to 2% of a noble metal active component, 1 to 20% of a metal oxide and 78 to 98.9% of an active carbon supporter. The invention also discloses a preparation method for the supported active carbon catalytic material capable of eliminating formaldehyde at room temperature. The method is characterized by comprising the following steps: pretreatment of active carbon; modification of active carbon; loading of the active component, and washing, filtering and drying so as to prepare the supported active carbon catalytic material capable of eliminating formaldehyde at room temperature. The catalytic material has the double functions of adsorption and catalytic oxidation at normal temperature during elimination of formaldehyde at room temperature; under the conditions of room temperature and a space velocity of 10000/h, the removal rate of formaldehyde by the catalytic material is more than 98.2%, and formaldehyde becomes harmless H2O and CO through catalytic oxidation, thereby realizing green elimination of formaldehyde; moreover, the catalytic material has good resistance to water vapor and a long service life, and the preparation method for the material is simple and is easy to operate.
Owner:SHANGHAI NAT ENG RES CENT FORNANOTECH

Preparation of room temperature formaldehyde catalyst

Belonging to the technical field of adsorption catalysis and air pollution control, the invention relates to preparation of a room temperature formaldehyde catalyst. The invention is characterized in that: zeolite, sepiolite, a porous activated carbon material, cordierite or a self-made carrier is adopted as the catalyst carrier, one or more non-noble metal oxides, like magnesium oxide, aluminum oxide, silicon oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, zirconium oxide, lanthanum oxide or cerium oxide are taken as active components, and an impregnation technique is employed to prepare the catalyst, which can be powdery, strip, blocky, spherical or honeycomb. The loading amount of the non-noble metal oxides is 2-15wt%, and the content of the catalyst carrier is 85-98%. Under normal temperature and ambient humidity conditions, the catalyst has the capacity of catalytic oxidation of formaldehyde into non-toxic and harmless CO2 and H2O up to over 95%, no intermediate product is generated, and the catalyst has the characteristics of high catalytic oxidation activity, strong moisture resistant ability, stable operation, long service life and the like, thus being suitable for formaldehyde purification treatment in offices, office buildings, living rooms, shopping malls, hospitals, hotels and other places.
Owner:江苏瑞丰科技实业有限公司

Handling method for advanced purification of little-volume refractory wastewater and operation equipment

The invention relates to a treatment method for small water quantity refractory wastewater deep purifying and utilizing. The method comprises the following steps: step one, pre-filtrating wastewater is performed firstly; step two, the pH value of the wastewater is adjusted to 3-5 to ensure the wastewater to present subacidity; step three, the wastewater flows into a spout-fluid bed reaction tower, the wastewater is processed through a micro-electrolysis method, and micro-electrolysis composite functional material is utilized in the micro-electrolysis method; step four, the wastewater is processed through a photo-assisted fenton catalytic oxidation method; step five, the pH value of the wastewater is adjusted to 6.8-7.8, and then the wastewater is processed through strengthen flocculation method; step six, the wastewater flows to a microwave catalysis reactor, and is processed through a microwave catalytic oxidation method; step seven, the wastewater flows into a UV photochemical reactor, and is processed through the UV photocatalysis; step eight, the wastewater flows into a gravitation filter, and the wastewater can be clarified to meet the requirement of the reuse water quality. The invention also provides equipment for performing the treatment method.
Owner:东莞市英硫净水服务有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products