Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1859 results about "Catalytic hydrogenation" patented technology

Catalytic hydrogenation is hydrogenation in presence of catalysts. Addition of hydrogen to alkenes is an exothermic (releasing heat energy) reaction, requiring the use of a transition metal catalyst due to the high energy barriers to direct the reaction between alkenes and hydrogen gas.

Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.
Owner:HEADWATERS CTL

Catalyzer for oxalic ester hydrogenation synthesizing of glycolate and method of preparing the same

A catalyst for hydrogenated synthesis of glycollate with oxalate and a preparation method for the catalyst belong to the glycollate preparation technical field. The catalyst of the present invention uses the copper metal as the main active component, and silver as the promoter, and is manufactured with the method of immersion. A carrier of the catalyst is the modified silica sol. The select content of the copper metal is 5 to 45 percent of the carrier weight, and the optimal content of the copper metal is 10 to 40 percent. The content of silver metal is 0.1 to 15 percent of the carrier weight, and the optimal content of silver metal is 1 to 8.0 percent. The select carrier is the silica sol with a double peak pore distribution structure and the specific surface area of the carrier is 100-300m2/g; and the optimal specific surface area of the carrier is 120-240m2/g. The present invention settles the problem of applying a Cr/Cu catalyst in the oxalate gas-phase catalytic hydrogenation. Proven by experiments, the catalyst is provided with the very high reaction activity and glycollate selectivity in the reaction to synthesize glycollate with oxalate and hydrogen Moreover, the catalyst is provided with the long usable life and the stable reaction performance, and can be easily controlled.
Owner:TIANJIN UNIV

Application of tungsten-based catalyst in lignin catalytic hydrogenation for producing aromatic compound

The invention relates to hydrocracking of lignin, and specifically relates to a method for applying a tungsten-based catalyst to catalyze lignin hydrocracking for producing an aromatic compound. The catalyst comprises a main active component of non-zero-valent tungsten, and a second metal component of a small amount of one or more transition metals selected from zero-valent nickel, cobalt, ruthenium, iridium, palladium, platinum, iron, and copper. According to the method, raw materials such as lignin, biomass hydrolysis residue, lignosulfonate, and alkaline lignin are subject to catalytic hydrogenation under a hydrothermal condition with a temperature of 120 to 450 DEG C and a hydrogen pressure of 1 to 20MPa; the raw materials are cracked into C6-C9 phenolic compounds with high selectivity. A maximal phenol yield reaches 55.6%. Compared to existing technologies, according to the invention, renewable natural biomasses are adopted as raw materials, such that the raw materials are cheap, and have wide sources; inorganic acid and alkali are not required, such the production of a large amount of alkaline solution in traditional lignin catalysis is avoided; the tungsten-based catalyst is cheap; the reaction process is green, and has atom economical characteristics.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Method for preparing aromatic hydrocarbon by carrying out catalytic hydrodeoxygenation on lignin

The invention relates to a method for preparing aromatic hydrocarbon by carrying out catalytic hydrodeoxygenation on lignin. A catalyst used in the method provided by the invention comprises two active components, namely an acid site being one or combination of more than one of transition metal elements niobium, tantalum, zirconium, molybdenum, tungsten and rhenium and a hydrogenation or hydrogen transfer active site being one or more than one of ruthenium, platinum, palladium, iridium, iron, cobalt, nickel and copper. According to the method provided by the invention, a phenol group, a guaiacol group, a syringa phenolic group compound, natural lignin and industrial lignin are taken as raw materials, water is taken as a solvent, high selectivity catalytic hydrodeoxygenation is carried out at the temperature of 180-350 DEG C and hydrogen pressure of 0.1-5MPa or with methyl alcohol, isopropyl alcohol and formic acid as hydrogen sources, so that C6-C9 aromatic hydrocarbon is obtained, the highest mass yield of aromatic hydrocarbon is 10%, and content of aromatic hydrocarbon in product oil can be up to more than 75%. The method provided by the invention has the advantages that reproducible natural biomass can be used as a raw material, and the raw material is cheap and available; the water is taken as the solvent, so that a reaction process is environment-friendly; and content of aromatic hydrocarbon in the product is high, and reaction conditions are mild.
Owner:EAST CHINA UNIV OF SCI & TECH

Nano ruthenium carbon-supported metal hydrogenating catalyst and method for producing the same

The invention relates to a nano ruthenium-carbon loaded metal hydrogenation catalyst and a preparation method thereof. The catalyst consists of an active carbon carrier and metal ruthenium loaded on the active carbon and subjected to reduction activation treatment. The preparation method for the catalyst comprises the following steps: after the active carbon is subjected to ultrasonic treatment by nitric acid solution with a certain concentration, repeatedly using deionized water to wash the active carbon to be neutral, adding the active carbon into water-soluble precursor solution of the metal ruthenium, stirring and soaking the active carbon, then adjusting the pH value of mixed slurry by using alkaline compound aqueous solution, continuously stirring the solution for certain time, filtering the solution, washing a filter cake by water to be neutral, pulping the filter cake by water, adjusting the pH value of the mixed slurry by using the alkaline compound aqueous solution, adding the liquid-phase reduction ruthenium-carbon catalyst of a chemical reducing agent into the solution, washing the filter cake, transferring the filter cake to an oven and drying the filter cake to obtain the nano ruthenium-carbon loaded metal hydrogenation catalyst. The catalytic activity of the catalyst is good, the selectivity is high, the catalyst is particularly applicable to catalytic hydrogenation reaction of pyridine and derivatives thereof, the preparation method is simple to operate, and the production period is short.
Owner:XIAN CATALYST NEW MATERIALS CO LTD

Catalyst for preparing ethanol through hydrogenation of acetic acid as well as preparation method and application thereof

The invention belongs to the technical fields of a catalyst for preparing ethanol through catalytic hydrogenation of acetic acid and application thereof and aims at providing a catalyst for synthesizing ethanol through efficient catalysis and hydrogenation of acetic acid as well as a preparation method and application thereof. The adopted technical scheme is as follows: the catalyst for preparing ethanol through catalytic hydrogenation of acetic acid comprises an active component and a carrier, wherein the active component consists of a first active component and a second active component; the first active component comprises VIII noble metals such as Pd, Pt, Ru and Rh and metal oxides such as MoO3, WO3, CuO and Re2O7; the second active component comprises one of Zn, Cr, Sn, Co, Ni, Ce and OsO4; and the carrier is one of SiO2, Al2O3 and activated carbon. According to the invention, ethanol is synthesized by hydrogenation of acetic acid; two groups of active metals are used as a co-catalyst for concerted catalysis; the noble metals are reduced or not used in the preparation of the catalyst; and in the hydrogenation reaction of acetic acid, the reaction activity is extremely good and the selectivity is high.
Owner:山西盛驰科技有限公司

Platinum-based selective hydrogenation catalyst as well as preparation method and use thereof

The invention relates to a platinum-based selective hydrogenation catalyst. The catalyst uses active carbon as a carrier; and based on the total mass of the catalyst, in terms of mass content, the content of active component platinum metal is 0.5 to 5 percent, and the grain diameter of the platinum metal is less than 30 nanometers. The invention also relates to a preparation method for the catalyst: after the active carbon is subjected to ultrasonic treatment by nitric acid solution with a certain concentration, the active carbon is repeatedly washed by deionized water to be neutral and then added into PtCl2 aqueous solution with a certain pH value to carry out ultrasonic immersion, the solution is filtered, a filer cake is pulped and then reduced by using a chemical reduction method and filtered and washed until no chloride ion exist, and the filter cake is transferred into an oven to be dried to form a nano Pt/active carbon catalyst. The invention further relates to application of the catalyst. The catalytic hydrogenation activity of the catalyst is good, the selectivity is high, the catalyst can effectively inhibit dechlorination without adding dehalogenation inhibitor, the preparation process is simple to operate, and the platinum metal is easy to recover.
Owner:XIAN CATALYST NEW MATERIALS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products