Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2716 results about "Nitrogen doped" patented technology

Method for producing gate stack sidewall spacers

A method for forming sidewall spacers on a gate stack by depositing one or more layers of silicon containing materials using PECVD process(es) on a gate structure to produce a spacer having an overall k value of about 3.0 to about 5.0. The silicon containing materials may be silicon carbide, oxygen doped silicon carbide, nitrogen doped silicon carbide, carbon doped silicon nitride, nitrogen doped silicon oxycarbide, or combinations thereof. The deposition is performed in a plasma enhanced chemical vapor deposition chamber and the deposition temperature is less than 450° C. The sidewall spacers so produced provide good capacity resistance, as well as excellent structural stability and hermeticity.
Owner:APPLIED MATERIALS INC

Doped diamond for vacuum diode heat pumps and vacuum diode thermionic generators

A novel use of doped carbonaceous material is disclosed, integral to the operation of Vacuum Diode Heat Pumps and Vacuum Diode Thermionic Generators. In the preferred embodiment, the use of nitrogen-doped diamond enhances the operation of Vacuum Diode Heat Pumps and Vacuum Diode Thermionic Generators.
Owner:BOREALIS TECH LTD

Titania nanotube arrays, methods of manufacture, and photocatalytic conversion of carbon dioxide using same

Nitrogen-doped titania nanotubes exhibiting catalytic activity on exposure to any one or more of ultraviolet, visible, and / or infrared radiation, or combinations thereof are disclosed. The nanotube arrays may be co-doped with one or more nonmetals and may further include co-catalyst nanoparticles. Also, methods are disclosed for use of nitrogen-doped titania nanotubes in catalytic conversion of carbon dioxide alone or in admixture with hydrogen-containing gases such as water vapor and / or other reactants as may be present or desirable into products such as hydrocarbons and hydrocarbon-containing products, hydrogen and hydrogen-containing products, carbon monoxide and other carbon-containing products, or combinations thereof.
Owner:PENN STATE RES FOUND

Nitrogen-doped porous carbon material for lithium-air battery positive electrode

The present invention relates to a nitrogen-doped porous carbon material for a lithium-air battery positive electrode, wherein the nitrogen-doped porous carbon material has an interconnected graded pore structure, N is uniformly doped in the C skeleton, N accounts for 0.2-15% of the carbon material atomic ratio, the graded pores comprise mass transfer pores and deposition holes, the deposition holes account for 40-95% of the total pore volume, and the mass transfer pores account for 4-55% of the total pore volume. According to the present invention, with application of the carbon material as the lithium-air battery electrode material, the space utilization rate of the carbon material during the charge-discharge process can be increased at a maximum, and the energy density and the power density of the lithium-air battery can be effectively increased; and the preparation process is simple, the material source is wide, the pore structure of the graded pore carbon material can be regulated, the regulation manner is diverse, and the nitrogen doping manner is easily achieved.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method of nitrogen-doped porous-structure carbon material

The invention discloses a preparation method of a nitrogen-doped porous-structure carbon material and belongs to the technical field of inorganic material preparation. The preparation method utilizes a micromolecular carbon-containing compound as a raw material and comprises the following steps of based on the weight of the raw material, adding 0-400wt% of an inorganic base, 0-400wt% of an organic nitrogen-containing compound and 0-50wt% of a metal or metal oxide or inorganic metal salt into the raw material, carrying out uniform dispersion, and carrying out a reaction process in an inert gas protective atmosphere at a temperature of 400-900 DEG C for 0.5-12h so that the nitrogen-doped porous-structure carbon material having micropores, mesopores and macropores is obtained. The preparation method has simple processes, can be controlled easily, and realizes one-step combination of porous structure, functionalization nitrogen doping and metal particle modification. The nitrogen-doped porous-structure carbon material having high nitrogen content has a large capacitance value and good cycle performances, can be used as an oxygen reduction reaction catalyst having high activity, high selectivity and high stability and has a very large application prospect.
Owner:BEIJING UNIV OF CHEM TECH

Preparing method for nitrogen-doped porous carbon material, catalyst comprising material and application of material

The invention relates to a novel preparing method for an in-situ nitrogen-doped porous carbon material, the application of the in-situ nitrogen-doped porous carbon material serving as a carrier of a load type catalyst, the load type catalyst comprising the in-situ nitrogen-doped porous carbon material, and the application of the load type catalyst in the water phase alcohol condensation reaction. Cheap micromolecule nitrogen substances serve as a nitrogen source of the in-situ nitrogen-doped porous carbon material, nitrogen atom in-situ doping is achieved in the carbon material preparing process, the doping content of the in-situ nitrogen-doped porous carbon material is controllable, the in-situ nitrogen-doped porous carbon material is distributed evenly, the dispersity of metal in the carrier and the combining strength with the carrier can be improved through doping of nitrogen atoms, and therefore the catalytic activity of the nitrogen-doped porous carbon material can be improved, and the service life of the nitrogen-doped porous carbon material can be prolonged.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Coated article with ion treated overcoat layer and corresponding method

A coated article is provided that may be used as a vehicle windshield, insulating glass (IG) window unit, or the like. Ion beam treatment is performed on a layer(s) of the coating. For example, an overcoat layer (e.g., of silicon nitride) of a low-E coating may be ion beam treated in a manner so as to cause the ion beam treated layer to include (a) nitrogen-doped Si3N4, and / or (b) nitrogen graded silicon nitride. It has been found that this permits durability of the coated article to be improved.
Owner:GUARDIAN GLASS LLC

Nitrogen doped carbon quantum dot as well as preparation method and application thereof

The invention discloses a nitrogen doped carbon quantum dot as well as a preparation method and an application thereof, belonging to the technical field of material science. The preparation method comprises the steps: after mixing organic acid and organic amine, directly performing a hydrothermal reaction to prepare a nitrogen doped carbon quantum dot water dispersion solution, and extracting and drying the nitrogen doped carbon quantum dot water dispersion solution to obtain a nitrogen doped carbon quantum dot solid. The size of the nitrogen doped carbon quantum dot is not more than 10 nm, the nitrogen content is not more than 50 percent, the surface of the nitrogen doped carbon quantum dot contains amino, carboxyl and hydroxyl; and the quantum efficiency is 39.8-50 percent. The preparation method is simple to operate, environment-friendly, low in equipment requirement; and the prepared nitrogen doped carbon quantum dot has excellent light emitting property, and can be widely applied to fields such as photoelectric materials, biological imaging and fluorescence probe.
Owner:XIAN YABO BIOTECH

Nitrogen doped carbon material loaded catalyst

Belonging to the technical field of catalysts, the invention discloses a nitrogen doped carbon material loaded catalyst. The carbon material can realize nitrogen doping by means of nitrogen containing precursor chemical coupling and other surface modification methods, also a nitrogen source and a carbon source can be introduced simultaneously at high temperature for in situ synthesis of a nitrogen doped carbon material, and then a simple substance or compound of one or more of gold, copper, manganese, potassium or bismuth can be loaded on the nitrogen doped carbon material. The nitrogen doped carbon material loaded mercury-free catalyst involved in the invention has activity and stability obviously superior to those of ordinary carbon material loaded catalysts. Under certain reaction conditions, the activity of the nitrogen doped carbon material loaded catalyst is superior to that of ordinary carbon material loaded catalysts by over 10%. The carbon material and the catalyst disclosed in the invention are green and non-toxic, and have good environmental benefits. The process involved in the invention is simple, economical and feasible.
Owner:TSINGHUA UNIV +1

Nitrogen-doped porous carbon material, preparation method and use thereof

The present invention discloses a nitrogen-doped porous carbon material preparation method, which comprises: adopting nitrogen-containing macromolecule as a template agent and a nitrogen source, adopting a biomass derivative as a carbon source, carrying out a hydrothermal carbonization reaction under a hydrothermal condition, and removing the template agent to obtain the nitrogen-doped porous carbon material. The present invention further provides a class of nitrogen-doped porous carbon materials prepared by using the method. The material obtained through the preparation method has characteristics of high nitrogen content and relatively high specific surface area. Experiment results show that the nitrogen-doped porous carbon materials provide excellent absorption performances for hydrogen and carbon dioxide. In addition, due to presence of the nitrogen-containing group, the porous material of the present invention can be expected to be used for catalysis, gas storage, molecule separation, clean energy carriers, super capacitors and other fields.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Nitrogen doped amorphous carbon hardmask

Embodiments described herein generally relate to the fabrication of integrated circuits and more particularly to nitrogen doped amorphous carbon layers and processes for depositing nitrogen doped amorphous carbon layers on a semiconductor substrate. In one embodiment, a method of forming a nitrogen doped amorphous carbon layer on a substrate is provided. The method comprises positioning a substrate in a substrate processing chamber, introducing a nitrogen containing hydrocarbon source into the processing chamber, introducing a hydrocarbon source into the processing chamber, introducing a plasma-initiating gas into the processing chamber, generating a plasma in the processing chamber, and forming a nitrogen doped amorphous carbon layer on the substrate.
Owner:APPLIED MATERIALS INC

Preparation of nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst and application thereof in catalyzing o-chloronitrobenzene hydrogenation reaction

The invention provides a preparation method of a nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst and the application of the nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst in catalyzing an o-chloronitrobenzene hydrogenation reaction. According to the method, the novel nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is prepared by synthesizing a ferronickel layered doubled hydroxide precursor with small grain size and high surface energy through a nucleation crystallization isolation method, evenly mixing the ferronickel layered doubled hydroxide precursor with a melamine and dicyandiamide mixed carbon material precursor, and finally self-reducing at high temperature. The nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is efficiently applied to the reaction where halogenated aniline is generated through catalytic hydrogenation of a nitro-halogen compound, and the conversion rate of o-chloronitrobenzene and the selectivity of o-chloroaniline are respectively up to 95-100% and 98-100%. The structure of the novel nitrogen doped carbon-encapsulated core-shell structure ferro-nickel nano-catalyst is unique and novel, the process is green and energy-saving, the structure of the catalyst is stable, and the catalyst has a broad application prospect.
Owner:BEIJING UNIV OF CHEM TECH

High-density transition metal monoatomic load graphene-based catalyst and preparation method thereof

The invention provides a preparation method of a high-density transition metal monoatomic load graphene-based catalyst. The preparation method comprises the following steps of dissolving a nitrogen-containing precursor, a carbon source and a soluble transition metal salt, and performing evaporation drying, grinding and calcination to obtain the high-density transition metal monoatomic load graphene-based catalyst. According to the preparation method, only the soluble metal salt is utilized, glucose and the like are used as the carbon source, dicyandiamide is used as the nitrogen-doped source, and the high-efficiency catalyst with high active site density and high monoatomic loading quantity is successfully prepared only by one-step calcination method.
Owner:UNIV OF SCI & TECH OF CHINA

Nitrogen-doped porous carbon and preparation method thereof

The invention relates to a preparation method of nitrogen-doped porous carbon, and in particular relates to a method for preparing doped porous carbon by taking a heavy organism as a carbon source, belonging to the technical field of carbon material preparation. The method comprises the following steps of: firstly, conducting a reaction between a nitrogen source and formaldehyde to generate a prepolymer; then, mixing the prepolymer with a template and the carbon source, and reacting at certain temperature; and finally, curing and carbonizing a crosslinking product to obtain nitrogen-doped porous carbon. The method provided by the invention can obtain nitrogen-doped porous carbon with different pore structures and nitrogen contents through multiple ways such as control on the nitrogen source type, temperature control, control on the mass ratio of a carbon source to a nitrogen source, control on the dosage of a template agent and the like. By adopting a chemical polymerization blending carbonization method, the method effectively controls the loss of nitrogen in a thermal treatment process and improves the utilization rate of the nitrogen source; the selection range of the raw material is wide; and the method is easy to operate and easily realizes large-scale preparation while providing a new way for efficiently utilizing heavy organic matters.
Owner:DALIAN UNIV OF TECH

Composite material of nitrogen-doped porous carbon-wrapped carbon nano tube as well as preparation method and application of material

The invention relates to a composite material of a nitrogen-doped porous carbon-wrapped carbon nano tube as well as a preparation method and an application of the composite material. The preparation method comprises the following steps: dispersing the carbon nano tube in water, adding a carbon source to obtain a reaction system, subsequently performing hydrothermal reaction, performing thermal treatment on the carbon nano tube wrapped with a carbon layer on the surface, and a nitrogen source at the high temperature so as to obtain the composite material of the nitrogen-doped porous carbon-wrapped carbon nano tube. According to the preparation method, the carbon source is polymerized under a hydrothermal reaction condition so as to obtain the carbon layer, the outer surface of the carbon nano tube is wrapped with the carbon layer, subsequently the carbon layer is carbonized and decomposed to generate a porous structure under high temperature treatment, and at the same time, the gasified nitrogen source is diffused to the carbon layer through ducts to be subjected to in-situ doping. The composite material provided by the invention can be used as a cathode oxidation reduction catalyst of a fuel battery, is excellent in catalysis, and is high in oxidation activity when being compared with other nitrogen-doped materials reported in documents. The preparation method provided by the invention is simple and economic in process, convenient to operate and easy to achieve the large-scale production.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Nitrogen-doped transparent graphene film and manufacturing method thereof

Provided is a transparent graphene film which is prepared by maintaining the primary reduced state of a graphene oxide thin film via chemical reduction, reducing the graphene oxide thin film with chemical vapor deposition, and doping nitrogen, thereby enhancing the conductivity and enabling the control of work function and a manufacturing method thereof. According to the present disclosure, a flexible, transparent, electrical conductivity-enhanced, and work function controllable graphene film can be large area processed and produced in large quantities so that can be applied in real industrial processes by forming a graphene oxide thin film on a substrate, performing the primary chemical reduction using a reducing agent, and performing further the secondary thermal reduction and nitrogen doping by injecting hydrogen and ammonia gas through chemical vapor deposition equipment.
Owner:KOREA ADVANCED INST OF SCI & TECH

Method for synthesizing nitrogen doped carbon quantum dot based on one-step monocomponent hydro-thermal synthesis

The invention discloses a method for synthesizing nitrogen doped carbon quantum dots based on one-step monocomponent hydro-thermal synthesis, which comprises the following steps: mixing and dissolving ammonium citrate with water, putting the mixture in a sealed reaction vessel, performing heat preservation at 140-220 DEG C for 4-48 hours, after the reaction, naturally cooling to room temperature, and separating the product by a silica gel chromatographic column to obtain the nitrogen doped carbon quantum dots. Compared with existing methods, the method of the invention adopts a single and cheap raw material, is simple in steps, easy to operate, and suitable for mass production.
Owner:SHANGHAI JIAO TONG UNIV

Preparation method of high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial

The invention discloses a preparation method of a high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial, relating to a preparation method of a carbon material and aiming at solving the problems of small specific surface area, low nitrogen content, low productivity, poor graphitizing degree and high cost of the nitrogen-doped graphitizing carbon nanomaterial prepared by the prior art. The preparation method comprises the steps of: I. preparing a complex; II. curing and carbonizing the complex; and III. carrying out acid leaching method treatment, and drying. Compared with an existing nitrogen-doped graphitizing carbon nanomaterial, the prepared high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial has the advantages that the graphitizing degree is improved, the nitrogen content is increased, and the specific surface area is obviously increased, and the high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial has obvious pore diameter distribution. The preparation method is used for preparing the high-specific-surface-area porous nitrogen-doped graphitizing carbon nanomaterial.
Owner:HEILONGJIANG UNIV

Manufacturable low-temperature silicon carbide deposition technology

A method of depositing silicon carbide on a substrate, including placing a substrate in a low pressure chemical vapor deposition chamber; flowing a single source precursor gas containing silicon and carbon into the chamber; maintaining the chamber at a pressure not less than approximately 5 mTorr; and maintaining the substrate temperature less than approximately 900° C. The Method also includes a method for depositing a nitrogen doped silicon carbide by the addition of nitrogen containing gas into the chamber along with flowing a single source precursor gas containing silicon and carbon into the chamber.
Owner:RGT UNIV OF CALIFORNIA

Nitrogen-doped high-luminescent carbon quantum dot and preparation method thereof

The invention provides a nitrogen-doped high-luminescent carbon quantum dot and a preparation method thereof. The preparation method comprises the following steps: reacting by using a sodium citrate solution as a carbon source and ethanediamine as a source of N under a sealing condition, cooling an obtained product, then separating, and drying a solution obtained after separation so as to obtain the nitrogen-doped high-luminescent carbon quantum dot. The preparation method is simple in process, short in preparation period, low in manufacturing cost and good in repeatability; obtained raw materials are simple and easily available. The nitrogen-doped high-luminescent carbon quantum dot prepared by using the method is uniform in size distribution and high in luminescent density; the luminescent density of the nitrogen-doped high-luminescent carbon quantum dot is about 20 times of that of a general quantum dot, so that the application of the nitrogen-doped high-luminescent carbon quantum dot in the field of cell marking can be expanded. As the improvement of the luminescent density is caused by nitrogen doping, the nitrogen-doped high-luminescent carbon quantum dot prepared by the method has unique application when being used for detecting whether N exists in environments.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Nitrogen-doped chitosan-based activated carbon and preparation method thereof

The invention provides nitrogen-doped activated carbon synthesized by using biomass derivative and particularly provides nitrogen-doped chitosan-based activated carbon. Chitosan is used as raw materials. The content of nitrogen in the activated carbon is 2-8wt%. The specific surface area of the activated carbon is 600-1100m<2> / g. The aperture of the activated carbon is 0.46-1.5nm. The nitrogen-doped chitosan-based activated carbon is prepared by using the chitosan as raw materials through dissolution, freeze-drying and high-temperature carbonization. By dissolving the chitosan to reduce acting force among molecules, by conducting freeze-drying to control the overall structure of chitosan dry gel and by increasing the porosity and the specific surface area of chitosan carbonization products, the nitrogen-doped chitosan-based activated carbon with large specific surface area is obtained. An environmental-friendly process of preparing high-performance activated carbon without consuming strong acid and strong alkali is realized. The traditional activated carbon preparation process which is not environmental-friendly and is high in cost because activating agents, water and the like are greatly used is avoided. The invention additionally provides a preparation method of the nitrogen-doped chitosan-based activated carbon, which has the advantages that the preparation process is simple, the equipment is simple and easy to obtain and the like.
Owner:DALIAN UNIV OF TECH

Porous nano composite material for fuel cell oxygen reduction catalyst

The invention discloses a porous nano composite material for a fuel cell oxygen reduction catalyst, and is an M-N-C porous nano composite material, wherein M in M-N-C refers to base metal ferrum, cobalt or nickel, N refers to nitrogen, and C refers to carbon; small-particle-size metal nano particles are uniformly dispersed and embedded in a nitrogen-doped porous carbon carrier material; the base metal nano particles have the particle size range being 5-100nm; the mass percentage of nitrogen contained in the porous carbon carrier is 3-7%. The porous nano composite material for the fuel cell oxygen reduction catalyst, which is provided by the invention, has the advantages that because of the in-situ nitrogen doping of a carbon substrate, the implant of base metal nano particles in uniform distribution and the formation of the porous structure with high specific area, the catalytic oxygen reduction capability of the porous nano composite material is improved obviously, and the cycle stability of the material is improved; a precursor prepared by the composite material is low in cost, is easy to prepare, is controlled easily in the preparation process, is simple to operate, and facilitates industrial large-scale production.
Owner:NANKAI UNIV

Dual-function oxygen electrode catalyst containing non-noble-metal nanoparticles coated with nitrogen-doped porous carbon layer and preparation method of dual-function oxygen electrode catalyst

The invention relates to the field of catalysts for energy-producing devices such as fuel cells, metal-air cells, electrolysed water and the like, in particular to a dual-function non-noble-metal catalyst and a preparation method thereof. The structure of the dual-function catalyst with activity of realizing oxygen reduction and oxygen release simultaneously is that non-noble-metal nanoparticles are dispersedly coated with a two-dimensional nitrogen-doped porous carbon layer, and the active center of the catalyst is the non-noble-metal nanoparticles coated with nitrogen-carbon, non-noble-metal-nitrogen-carbon and the carbon layer. The non-noble-metal oxygen electrode catalyst has the advantages that raw materials are cheap, a preparation process is simple and template removal and other complicated operating steps are avoided, thereby being suitable for commercial production and capable of substantially reducing cost under the premise that catalytic performance is guaranteed.
Owner:EAST CHINA UNIV OF SCI & TECH

Nitrogen-doped graphite carbon serving as anode material of lithium ion battery, and preparation method and application thereof

The invention discloses a nitrogen-doped graphite carbon, which is obtained by calcining a graphite carbon material in a nitrogen-containing micromolecule material or atmosphere of the nitrogen-containing micromolecule material. When a pole piece which is prepared from the nitrogen-doped graphite carbon material is used as an electrode material of the lithium ion battery, the specific capacity of the material reaches 450 to 1,100mAh / g, and the material has high multiplying power performance and cycle performance. A preparation method of the nitrogen-doped graphite carbon is convenient to operate, and is easy and practicable; the prepared material has stable and excellent performance, and is the anode material of the lithium ion battery, which has good application prospect.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

ZIF-67 template method for preparing cobalt-platinum core-shell particle/porous carbon composite material and catalytic application of composite material in cathode of fuel cell

The invention discloses application of a nitrogen-doped porous carbon fixed Co@Pt nano-particle composite material, prepared by taking ZIF-67 as a template, as an efficient catalyst for oxygen reduction catalytic reaction of a cathode of a fuel cell. The application has the superiorities that (1) a synthetic method of the catalyst is simple and feasible, the shape of the catalyst is controllable, batch preparation can be realized, and the catalytic performance is very stable; (2) the oxygen reduction catalytic reaction of nitrogen-doped porous carbon fixed cobalt-platinum core-shell nano-particles in the cathode of the fuel cell shows that the nano-particles have good catalytic activity and excellent methanol poisoning resistance stability, and compared with traditional commercial Pt / C, the nano-particles have relatively high take-off potentials and half-wave-peak potentials (nano-particles: 0.99V and 0.87V, and Pt / C: 0.98V and 0.83V); and (3) metal organic frameworks (MOFs) for preparing the catalyst have sequential microcellular structures and relatively large specific surface areas and can be widely applied to the storage and conversion of energy sources. Therefore, a method for simply and directly preparing cheap and efficient cathode oxygen reduction electro-catalyst is provided for the fuel cell and has a wide application prospect.
Owner:SOUTH CHINA UNIV OF TECH

Method of manufacturing semiconductor having group II-group VI compounds doped with nitrogen

A method of making a semiconductor comprises depositing a group II-group VI compound onto a substrate in the presence of nitrogen using sputtering to produce a nitrogen-doped semiconductor. This method can be used for making a photovoltaic cell using sputtering to apply a back contact layer of group II-group VI compound to a substrate in the presence of nitrogen, the back coating layer being doped with nitrogen. A semiconductor comprising a group II-group VI compound doped with nitrogen, and a photovoltaic cell comprising a substrate on which is deposited a layer of a group II-group VI compound doped with nitrogen, are also included.
Owner:UNIVERSITY OF TOLEDO

Preparation method and application of nitrogen-doped starch-based activated carbon microsphere material

The invention discloses a preparation method and application of a nitrogen-doped starch-based activated carbon microsphere material. The nitrogen-doped starch-based activated carbon microsphere material is prepared by taking starch as the carbon source and taking a nitrogen-containing compound as the nitrogen source through the steps of gelatinization, hydrothermal treatment, carbonization, activation and the like. The diameters of prepared carbon microspheres range from 0.5 micrometer to 10 micrometers, the particle size is controllable, the dispersity is good, the specific surface area ranges from 1,000 m<2> / g to 3,000 m<2> / g, and the nitrogen content ranges from 0.2% to 15%. The prepared material relates to the application fields of electrochemical energy storage, adsorption separation, catalyst carriers, drug carriers and the like and is particularly applicable to electrochemical energy storage. Green biomass is adopted as the carbon source, sources are wide, the price is low, and the preparation technology is simple, easy to control, environmentally friendly and suitable for large-scale production.
Owner:XIANGTAN UNIV

Nitrogen-doped active carbon catalyzer and application thereof in chloroethylene synthesis

The invention discloses a nitrogen-doped active carbon catalyzer and application of the nitrogen-doped active carbon catalyzer in chloroethylene synthesis. The preparation method of the nitrogen-doped active carbon catalyzer comprises the following steps that a nitrogen-containing compound is dissolved in water to obtain a nitride solution, then active carbon is added in the nitride solution to be dipped, at last the dipped active carbon is dried completely and calcined in nitrogen, and the nitrogen-doped active carbon catalyzer is prepared. Additionally, the active carbon can be placed in a tube furnace, nitrogen is pumped in the tube furnace at high temperature, and the nitrogen-doped active carbon catalyzer is prepared. The nitrogen-doped active carbon catalyzer has a good catalytic performance in catalyzing ethyne and chlorine hydride to react with each other to synthesize chloroethylene. The catalyzer is more environmental friendly than an active carbon catalyzer carrying metal ions in the prior art.
Owner:SHANGHAI ADVANCED RES INST CHINESE ACADEMY OF SCI

Nitrogen-doped carbon-clad manganese oxide lithium ion battery composite cathode material, and preparation method and application of composite cathode material

The invention discloses a nitrogen-doped carbon-clad manganese oxide lithium ion battery composite cathode material, and a preparation method and an application of the composite cathode material. The composite material is composited by nanoscale manganese oxide and dopamine, wherein manganese oxide is spherical. The method comprises the steps of mixing a prepared spherical manganese oxide nano particle and dopamine hydrochloride, performing filtering, washing and drying to obtain a manganese oxide and polydopamine composite, and then converting a polymerization layer into a nitrogen-doped carbon layer by high-temperature carbonization. The prepared nitrogen-doped carbon-clad manganese oxide (MnO@NC) lithium ion battery composite cathode material is stable in structure and good in conductivity, and has excellent rate capability and cycling stability as a lithium ion battery cathode material; and polymerization of the dopamine is only completed at a room temperature and under a slightly alkaline condition, so that the composite cathode material is low in cost, low in energy consumption, convenient to control and environment-friendly, is suitable for a practical application of a lithium ion battery, and can realize industrial mass production.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method of nitrogen-doped zinc oxide film

The invention relates to the technical field of zinc oxide preparation, and in particular relates to a preparation method of a nitrogen-doped zinc oxide film. The preparation method comprises: placing a silicon substrate in the reaction cavity of atomic layer deposition (ALD) equipment; introducing gas containing a zinc source into the reaction cavity of the ALD equipment, wherein the zinc atoms in the gas containing the zinc source are adsorbed to the silicon substrate; conveying hydrogen to the reaction cavity of the ALD equipment based on nitrogen as a carrier gas, and simultaneously carrying out plasma discharge; introducing an oxygen-containing source to the reaction cavity of the ALD equipment, wherein the zinc atoms which do not react with nitrogen atoms form zinc-oxygen bonds withthe oxygen atoms in the oxygen-containing source; and repeating the steps, so as to grow the zinc oxide film containing the nitrogen atoms layer by layer. In the preparation method provided by the invention, nitrogen doping is carried out on the zinc oxide film by utilizing the ALD equipment; the method is simple and practicable; by utilizing the characteristic of atomic layer deposition and single-layer cycle growth, the uniform nitrogen doping in the whole film structure can be achieved in the process of zinc oxide film growth so that the doped film is complete in structure and excellent inproperty.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products