Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

101results about How to "Microstructure is easy to control" patented technology

Low-density ablation thermal insulation type composite and preparation method thereof

The invention relates to a low-density ablation thermal insulation type composite and a preparation method thereof. The composite adopts phenolic aerogel of the nanometer particle structure as a matrix and adopts a flexible fiber blanket or a fiber weaving body as a reinforcement body, and the composite is obtained through the steps of phenolic resin preparation, phenolic resin solution preparation, thermal treatment of the flexible fiber blanket or the fiber weaving body, steeping of the flexible fiber blanket or the fiber weaving body with the phenolic resin solution, a sol-gel reaction, aging, drying and curing of the composite and the like. Compared with the prior art, the composite is excellent in thermal protective performance, good in mechanical performance, high in designability, simple in preparation technology, low in cost and easy to process and mold, promotes later-period dimensional cutting, meets different thermal protective needs under the medium heat flow and medium and low heat flow environments, and can be applied to manned space flight and deep space detection aircrafts, outer thermal protective layers of various tactic and strategic weapons working for a short time, and inner ablation heat insulation and thermal protective layers of engines, disposable hypersonic vehicles and the like.
Owner:EAST CHINA UNIV OF SCI & TECH

8-N-arylamine-hydrogenation quinoline complexation aluminum alkyl compound and preparation method and application thereof

ActiveCN106046038ARaw materials are cheap and easy to getMeet the requirements of ring-opening polymerizationGroup 3/13 element organic compoundsPolyesterLactide
The invention discloses an 8-N-arylamine-hydrogenation quinoline complexation aluminum alkyl compound and a preparation method and application thereof. The preparation method of the 8-N-arylamine-hydrogenation quinoline complexation aluminum alkyl compound comprises the following steps that 8-N-arylamine-hydrogenation quinoline ligand is dissolved in an anhydrous solvent, aluminum alkyl is added, stirring is carried out under protection of nitrogen at the room temperature, the solvent is removed through decompression, a poor solvent is used for carrying out washing for three times, and the target aluminum alkyl compound is obtained. The 8-N-arylamine-hydrogenation quinoline complexation aluminum alkyl compound is an efficient lactone and lactide ring-opening polymerization catalyst and can be used for lactone and lactide ring-opening polymerization reaction. According to the 8-N-arylamine-hydrogenation quinoline complexation aluminum alkyl compound, the raw materials are low in price and easy to get, the synthetic route is simple, the product yield of high, characters are stable, the prepared product is abundant and changeable in structure, the catalytic performance is easy to regulate, the requirements of different kinds of lactone and lactide ring-opening polymerization can be met, prepared aliphatic polyester high polymer material is controllable in structure and performance, and requirements of industrial departments can be met.
Owner:QINGDAO UNIV OF SCI & TECH

Microwave irradiation pressurized sintering equipment and use method thereof

The invention relates to microwave irradiation pressurized sintering equipment and a use method thereof, which have the technical scheme that an upper pressing head (21) is fixedly arranged in the center of the inner wall of an upper oven cover (22) of a microwave oven, the upper part and the lower part of the inner wall of a side plate (3) of the microwave oven are respectively and fixedly provided with an upper microwave reflecting plate (20) and a lower microwave reflecting plate (7), a first waveguide tube (5) is embedded in the right side of the side plate (3) of the microwave oven, a second waveguide tube (18) is embedded in the left side of the side plate (3) of the microwave oven, the first waveguide tube (5) and the second waveguide tube (18) are respectively and fixedly connected with a first permatron (6) and a second permatron (19), a hydraulic cylinder (12) is vertically fixed in the center of a base (13), a slide block (11) passes through a chute hole of a lower oven cover (10), and a lower pressing head (8) is arranged on the upper part of the slide block (11). The invention has the characteristics that the sintering temperature can be effectively reduced, the sintering time can be shortened, microstructures of materials are convenient to control, crystal grains are thinned, the investment is saved, and the cost is low.
Owner:WUHAN UNIV OF SCI & TECH

Spatially ordered frame structure ceramic-metal composite material and preparation method thereof

The invention provides a spatially ordered frame structure ceramic-metal composite material and a preparation method thereof, and belongs to the technical field of a ceramic-metal composite material.The preparation method comprises the following steps: acquiring 3D printing slicing data according to a predetermined ceramic forming structure; preparing ceramic powder slurry to perform 3D clay printing to form a blank; sintering the blank to obtain a ceramic substrate and performing surface film covering treatment; and compounding a metal material and the ceramic substrate with a metal castingmethod or a powder metallurgy method. By the 3D clay rapid integrated formation printing method, spatially ordered frame structure ceramic with high size precision, high surface quality and excellentmechanical property can be manufactured; and the method is suitable for formation of various single-phase or complex-phase ceramic materials. The ratio of the ceramic to the metal can be adjusted randomly, the microstructure can be controlled, the properties of the composite material can be designed, the advantages of high rigidity, high hardness and high impact toughness are achieved, and excellent friction resistance and heat resistance are shown up.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Method for preparing copper silicon alloy modified carbon/ceramic friction material

The invention discloses a method for preparing a copper silicon alloy modified carbon / ceramic friction material, which comprises the following steps of: 1, thermally treating a carbon fiber prefabricated body at high temperature; 2, performing chemical vapor infiltration and (or) resin impregnation / carbonization densification treatment on the thermally-treated carbon fiber prefabricated body to obtain a low-density carbon fiber reinforced matrix carbon (C / C) porous material; 3, preparing Cu and Si infiltration powder; and 4, placing the Cu and Si infiltration powder into a graphite crucible, spreading the C / C porous material on the powder in the graphite crucible, performing non-immersion smelting infiltration in a high-temperature vacuum furnace, and compounding the C / C porous material and the powder to form the copper silicon alloy modified carbon / ceramic friction material through the reaction of Si and C, Si and Cu. The method has the advantages of simple and easily-controlled production process and low preparation cost; the prepared material has controllable microstructure and performance and excellent heat conducting performance; and the method can realize industrialized production, and has broad application prospect in the civil and military fields of airplanes, rapid trains, automobiles and the like.
Owner:HUNAN SHIXIN NEW MATERIALS CO LTD

Preparation method of carbon/carbon-boron nitride anti-friction composite material

The invention discloses a preparation method of a carbon / carbon-boron nitride anti-friction composite material. The preparation method comprises acidizing a graphitized C / C blank, washing the acidizedC / C blank to be neutral to obtain a preprocessed C / C blank, immersing the preprocessed C / C blank into a solution containing modifier for reaction to obtain a functionalized C / C blank, impregnating the functionalized C / C blank with h-BN (hexagonal boron nitride) slurry, then drying the impregnated C / C blank to obtain a C / C-BN precursor, and performing carbonizing densification and graphitization on the C / C-BN precursor with a carbon source to obtain the C / C-BN anti-friction composite material; the modifier is selected from silane coupling agent or polyvinyl alcohol (PVA). According to the preparation method of the carbon / carbon-boron nitride anti-friction composite material, a slurry impregnation method is applied for the first time to produce a BN matrix, and after the C / C blank is functionalized, a slurry impregnation process can effectively introduce BN powder into the C / C blank. The preparation method of the carbon / carbon-boron nitride anti-friction composite material can effectively avoid damage of carbon fiber and ensure excellent structural strength of the C / C-BN composite material; the prepared C / C-BN composite material has excellent friction-wear properties.
Owner:CENT SOUTH UNIV

Block type anion exchange membrane containing dense ion strings, and preparation method thereof

InactiveCN111793230AIncrease moisture contentObvious microphase separationFuel cellsFuel cellsChloromethyl Ether
The invention provides a block type anion exchange membrane containing dense ion strings, and a preparation method thereof, wherein the block type anion exchange membrane can be used for an alkaline fuel cell, and is structurally characterized in that a plurality of ion strings are densely grafted on a hydrophilic segment of a block copolymer to serve as functional groups. The preparation method mainly comprises the following steps: (1) preparing a hydrophilic segment containing tetraphenylmethyl and a hydrophobic segment containing a suspended nitrile group; (2) preparing a block copolymer, and carrying out bromination modification; and (3) preparing the block type anion exchange membrane containing the dense ion strings. According to the invention, the anion exchange membrane prepared bythe method has a developed ion transmission channel, has the characteristics of high water content and low swelling rate, and overcomes the defect that the existing anion exchange membrane cannot have high water content, high conductivity and low swelling rate at the same time; and a highly toxic carcinogenic chloromethyl ether reagent is not used in the preparation process, so that the membranehas a wide application prospect in the field of alkaline fuel cells.
Owner:HUAQIAO UNIVERSITY

Electro-catalyst of zinc-air battery and method for making same

The invention discloses a clectrocatalyst for zinc-air batteries and a preparation method. The general formula of the clectrocatalyst is LiNixCoyFezMn2-x-y-zO4, wherein x is more than or equal to 0.10 and less than or equal to 0.50, y is more than or equal to 0 and less than or equal to 0.50, and z is more than or equal to 0 or less than or equal to 0.50. The crystalline structure of the clectrocatalyst is spinel-type crystalline structure. The clectrocatalyst of the invention has high electro-catalytic activity and good chemical stability, and the raw materials needed for the preparation of the clectrocatalyst has rich reserves and low prices; and the uniform doping of different metals in the clectrocatalyst outcome can be realized and an outcome with uniform structure at the molecular level can be obtained within a short time. The clectrocatalyst of the invention requires low heat treatment temperature and short heat treatment time, and the obtained outcome has high purity and narrow particle size distribution. And the reaction process and the microstructure of the sol-gel are easy to be controlled, resulting in little side effects, high outcome conversion rate, and thus having high outcome quality and production efficiency.
Owner:SOUTH CHINA UNIV OF TECH

Nanoporous copper/cu(oh)2 nanowire array sensor electrode material and preparation method thereof

The invention discloses a nano porous copper / Cu(OH)2 nanowire array sensor electrode material and a preparation method thereof, and belongs to the technical field of micro-sensation. The preparation method of the nano porous copper / Cu(OH)2 nanowire array sensor electrode material mainly comprises the following two steps: by taking Cu-Zr-Al amorphous alloy as a precursor, preparing a flexible nano porous copper film of a double-continuous through hole structure by using a chemical alloy removing method; performing controllable growth on a Cu(OH)2 nanowire array on a nano porous copper film substrate by using an alkali oxidation method. The nano composite electrode material disclosed by the invention is of a structure similar to 'sandwich', Cu(OH)2 nanowires are uniformly and densely distributed on the nano porous copper substrate, have directivity and are uniform in morphology, large in internal specific surface area and very high in electric catalytic activity, the nano composite material can be directly used as an electrode material of a non-enzyme glucose sensor, the linear response range for glucose is 0.2-9 mM, the detection sensitivity is 2.09 mA / cm<2>.mM, the detection limit is 200 nM (S / N=-3.6), and the current response time is less than 1 second.
Owner:UNIV OF SCI & TECH BEIJING

Diode sputtering coating equipment used for coating inner wall of vacuum cup

The invention discloses diode sputtering coating equipment used for coating the inner wall of a vacuum cup. The diode sputtering coating equipment comprises a support, a sputtering coating device and a vacuum device, wherein the sputtering coating device is arranged on the support, the vacuum device is connected with one end of the sputtering coating device, and a plurality of cup tools are arranged in the sputtering coating device and can be matched with different sputtering electrodes. The diode sputtering coating equipment has the benefits that the diode sputtering coating equipment is suitable for vacuum cups in different sizes and shapes and is simple in structure, easy to maintain and good in continuity; multiple workpieces can be machined in the same parameter, the production efficiency is high, and the quality consistence of coatings is good; additionally, due to the fact that the sputter electrodes can be replaced freely, the deposition temperature and other key parameters can be adjusted at will, and the quality and the components of the coatings can be adjusted; besides, once a more developed anti-bacteria coating is developed in the future, the equipment is very favorable for updating of the novel anti-bacteria coating and quick building of industrialization.
Owner:BEIJING TECHNOL SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products