Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

919results about How to "Increased diffusion rate" patented technology

All-solid-state lithium battery with gradient structure and preparation method thereof

ActiveCN103746089AObvious solid electrolyteObvious electrode interfaceFinal product manufactureNon-aqueous electrolyte accumulator electrodesAll solid statePower flow
The invention discloses an all-solid-state lithium battery with a gradient structure and a preparation method thereof. The all-solid-state lithium battery comprises a cathode with a gradient structure layer, a solid electrolyte layer, and a metal anode or an anode with a gradient structure layer; the preparation method comprises the following steps: preparing cathode slurries with different component concentrations or particle sizes or molecular weights, coating a collector electrode with the cathode slurries according to the component concentration gradient or particle size gradient or molecular weight gradient to prepare an electrode layer, coating the electrode layer with the solid electrolyte layer, finally attaching the metal anode, or preparing anode slurries with different component concentrations or particle sizes or molecular weights, coating the electrolyte layer with the anode slurries according to an opposite concentration gradient or particle size gradient or molecular weight gradient based on the preparation method of the cathode electrode layer, and finally attaching a collector electrode to obtain the all-solid-state lithium battery with a gradient structure; the preparation method is simple, and the prepared all-solid-state lithium battery is stable in large-rate charge and discharge, and can work normally at large current.
Owner:王海斌

Sound-insulating, ventilating and heat transfer enhancing acoustic metamaterial unit, composite structure and preparation method

The invention relates to a sound-insulating, ventilating and heat transfer enhancing acoustic metamaterial structural unit, which comprises a frame, wherein a restraining body is arranged inside the frame, and at least one of the upper and lower surfaces of the frame is coated with a thin film; and at least one hole is formed in the restraining body and the thin film. In addition, the invention provides an acoustic metamaterial composite plate and an acoustic metamaterial composite structure comprising the acoustic metamaterial structural unit, as well as a frequency modulation method and an assembly method. The acoustic metamaterial structural unit has sound insulation capability superior to that of an ordinary perforated plate or micro-perforated plate within a broadband, can ensure that sufficient heat flow, air flow or liquid flow can pass through smoothly, and increases heat diffusion rate of fluid media on both sides of holes and accelerates heat convection efficiency through unit localized vibration generated by the structure under excitation of acoustic waves. The acoustic metamaterial structural unit and the array composite structure have the advantages of simple assembly technology and stable working performance.
Owner:黄礼范

Catalyst for normal paraffin hydroisomerization reaction and preparation method as well as application thereof

The invention relates to a catalyst for a normal paraffin hydroisomerization reaction and a preparation method as well as an application thereof. The catalyst has the characteristics that the activity is high in an n-hexane hydroisomerization reaction, and the selectivity and stability are good for a double-branched-chain product. The catalyst comprises modified zeolite molecular sieve ZSM-12 treated by alkaline solution and noble metal of family VIII, wherein the zeolite molecular sieve ZSM-12 adopts zeolite molecular sieve ZSM-12 containing organic amine template. The preparation method of the catalyst comprises the following steps of: desilication of zeolite molecular sieve ZSM-12 containing template after being treated with alkaline solution to obtain zeolite molecular sieve ZSM-12 with high content of mesoporous, and preparing isomerized catalyst by loading Pt. The catalyst is applied in the normal paraffin hydroisomerization reaction, when the catalyst is applied, the n-hexane hydroisomerization reaction is carried out on a fixed bed miniature reactor, the reacting raw material n-hexane is fed into the reactor by a force pump, and is contacted with the catalyst to react in the reactor after being mixed with hydrogen in a mixer.
Owner:ZHEJIANG NORMAL UNIVERSITY

Conductive composite waterborne adhesive as well as one-pot preparation method and application thereof

The invention discloses a conductive composite waterborne adhesive as well as a one-pot preparation method and application thereof. A conductive composite waterborne adhesive material is prepared by adopting a one-pot method by simultaneously initiating grafting polymerization between double bond-containing grafting monomers and hydroxyl-containing waterborne polymers and chemical oxidative polymerization of conductive polymer monomers by adopting the same polymerization initiator, wherein the double bond-containing grafting monomers and the hydroxyl-containing waterborne polymers perform grafting polymerization reaction, and simultaneously, the conductive polymer monomers perform chemical oxidative polymerization; the conductive composite waterborne adhesive prepared by the invention hasgood dispersity, film forming property and chemical stability, can be dispersed in an aqueous solution for a long time in the form of colloid, does not settle, exists stably, has excellent electronicconductivity, solves the problem about dispersity of an adhesive and conductive particles in an electrode slurry preparation process, realizes uniform distribution of various components in an electrode, and ensures high-efficiency electron and ion transportation in the electrode.
Owner:GUANGZHOU INST OF ENERGY CONVERSION - CHINESE ACAD OF SCI

Method for preparing ternary anode material of long-service-life and high-capacity lithium ion battery

A method for preparing a ternary anode material of a long-service-life and high-capacity lithium ion battery and belongs to the technical field of material synthesis. The method comprises the following steps: weighing a lithium source and NixCoyMnz(OH)2, uniformly mixing, pre-burning at a temperature of 400-600 DEG C for 2-6 h, and forging at a temperature of 700-1000 DEG C for 6-16 h; uniformly mixing the ternary anode material, the lithium source and nanometer TiO2; forging at a temperature of 700-950 DEG C for 3-8 h to obtain the ternary anode material which is prepared by twice lithium adding and twice forging. The ternary anode material is prepared through twice lithium adding and twice forging, and the extra lithium source which is introduced through twice lithium adding and twice forging is electrochemically pre-embedded in an anode. Meanwhile, the Li+ diffusion rate can be effectively increased through the doping of Ti4+, and the irreversible capacity loss is reduced. In an interval of 2.3-4.6 V, a discharging platform is prolonged, and the first discharging capacity, the cyclic performance and the rate performance of the material are obviously improved. The method is simple, effective, economical and practical and has a remarkable industrial application effect.
Owner:HARBIN INST OF TECH

Carbon-cladded sodium ferric pyrophosphate material and preparation method thereof as well application of carbon-cladded sodium ferric pyrophosphate material serving as sodium-ion battery positive electrode material

The invention discloses a carbon-cladded sodium ferric pyrophosphate material and a preparation method thereof as well application of the carbon-cladded sodium ferric pyrophosphate material serving asa sodium-ion battery positive electrode material. The carbon-cladded sodium ferric pyrophosphate material has an ordered nano-structure and the surface of the material is uniformly cladded with a carbon layer; the preparation method of the carbon-cladded sodium ferric pyrophosphate material comprises the following steps: sequentially carrying out ball milling and mixing on an organic macromolecular surfactant, a phosphorous source, a hydrocarbon type mixture, an iron source and a sodium source to obtain a precursor; putting the precursor into a protective atmosphere and calcining to obtain the carbon-cladded sodium ferric pyrophosphate material. The carbon-cladded sodium ferric pyrophosphate material has the ordered nano-structure and a large contact area with electrolyte; an ion dispersion path is short and an ion dispersion speed in a battery system is effectively improved; an electron transmission speed and the stability of the electrode material are effectively improved through aconductive carbon layer; the carbon-cladded sodium ferric pyrophosphate material is used as the sodium-ion battery positive electrode material and has excellent electrochemical performance, and is anideal sodium-ion battery positive electrode material; a preparation process is simple in technology and low in cost; large-scale production is easy to enlarge and the carbon-cladded sodium ferric pyrophosphate material has a very great application prospect.
Owner:CENT SOUTH UNIV

Method for preparing lithium nickel cobalt manganese oxide ternary cathode material in liquid-phase sugar coating and spray drying manners

The invention discloses a method for preparing a lithium nickel cobalt manganese oxide ternary cathode material in liquid-phase sugar coating and spray drying manners. The method comprises the steps of firstly mixing sulphate liquids of Ni, Co and Mn, performing a coprecipitation reaction under an alkaline condition to prepare a ternary composite precursor (NixCoyMnz)(OH)2, filtering, washing, drying, adding the ternary composite precursor, a soluble metal lithium compound, a rare earth compound to a sugar-dissolved solvent, uniformly mixing, and spray drying to obtain a sugar-coated rare-earth-element-doped ternary precursor, finally performing high-temperature calcination to obtain a rare-earth-element-doped ternary material LiNixCoyMnzRnO2, wherein R is a doped rare earth element, the sum of x, y and z is equal to 1, and n is not less than 0.002 and is not greater than 0.1. According to the method for preparing the lithium nickel cobalt manganese oxide ternary cathode material in the liquid-phase sugar coating and spray drying manners, sugar coating is utilized, so that the dissipation of pungent smell is reduced in a spray drying process; the prepared stoichiometric-ratio ternary material has the advantages that the secondary particle dispersity is good, the size is uniform, the infiltration of electrolyte is facilitated, the diffusion rate of lithium ions is increased basically, and the impedance of the lithium ions during diffusion is reduced, so that the electrical property of a material is improved, and the stable production is convenient.
Owner:CHONGQING TERUI BATTERY MATERIAL

Method for reducing diffusion temperature of magnesium alloy surface spraying coating

The invention provides a method for reducing the diffusion temperature of spraying coating of magnesium alloy surface. First, nanocrystallization treatment is done on the magnesium alloy surface before the hot spray coating is done on the magnesium alloy matrix surface, which ensures the thinning of the crystal grain on the magnesium surface to the size of nanometer and eliminates the roll scale of the magnesium surface and coarsening to increase the mechanical riveted bonding force of matrix and coating; and then the magnesium alloy surface is hot sprayed by aluminum or zinc or a zinc/aluminium complex coating; finally, the magnesium alloy is treated to preserve heat in an ordinary heat treatment furnace at a temperature of 200 to 400 degrees, which facilitates the coating and the matrix to form metallurgical bonding. The invention adopts the surface nanocrystallization technique, which can not only reduce the diffusion temperature of spraying coating of magnesium alloy surface, but also avoid the necessary sand blasting pretreatment technology before spray finishing. In addition, special processing step is not needed, which eliminates the roll scale of the matrix surface and coarsening surface and ensures that a layer of nanocrystal is formed on the magnesium alloy matrix surface, thereby saving the processing time before spray finishing and raising the productivity effect.
Owner:重庆工学院

Graphite/silicon@carbon core-shell structure composite spherical cathode material and preparation method thereof

The invention discloses a graphite/silicon@carbon core-shell structure composite spherical cathode material and a preparation method thereof. By means of the material, the volume expansion effect of silicon in the lithium de-intercalation process can be inhibited, and a high-capacity lithium iron battery silicon/carbon composite cathode material is obtained. By means of the technical scheme, a spherical graphite/silicon framework precursor serves as the core of the composite cathode material, and an amorphous pyrolytic carbon or graphite-like carbon material wrapping layer serves as the shell; nanometer or micrometer silicon is embedded in flake graphite cracks to form a graphite framework, the volume expansion effect of silicon in the lithium de-intercalation process is inhibited through the mechanical characteristics of the graphite framework, then a spherical framework is formed by mixing and granulating 3-20 wt% of nanometer or micrometer silicon, 50-80 wt% of flake graphite and 10-40 wt% of amorphous pyrolytic carbon or graphite-like carbon, and an amorphous pyrolytic carbon or graphite-like carbon spherical composite conductive carbon net structure wrapping a graphite/silicon surface is formed.
Owner:四川聚能仁和新材料有限公司

Paste solder for hard soldering of SiCp/Al composite material and preparation method and use method thereof

The invention relates to a paste solder for the hard soldering of a SiCp/Al composite material and a preparation method and use method thereof, and relates to a solder for the hard soldering of the SiCp/Al composite material and a preparation method and use method thereof. The paste solder for the hard soldering of the SiCp/Al composite material aims at the problem that the traditional strip-shaped solder or foil-shaped solder is adverse to the automation in a hard soldering process and is not suitable to weld an irregular, small-sized or geometrical complicated part. The paste solder for the hard soldering of the SiCp/Al composite material is prepared by mixing solder alloy powder, a soldering flux and an adhesive. The preparation method comprises the following steps of: 1, preparing the solder alloy powder; 2, preparing the soldering flux; 3, preparing the adhesive; and 4, mixing to prepare the hard soldering of the paste solder for the SiCp/Al composite material. The use method comprises the following steps of: adopting coating type cloth or needle tube type cloth; and then carrying out vacuum heating treatment so as to complete welding. The preparation method disclosed by the invention is mainly used for preparing the paste solder for the hard soldering of the SiCp/Al composite material.
Owner:HENAN POLYTECHNIC UNIV +2

Method for preparing ionic liquid plasticized composite polymer electrolyte for lithium ion battery

The invention relates to a method for preparing ionic liquid plasticized composite polymer electrolyte for a lithium ion battery. In the invention, the conductivity of a polymer electrolyte membrane is increased, meanwhile, the electrochemical stability window and the mechanical properties of the membrane are also further enhanced. The method comprises two parts. The first part is to prepare an inorganic particle doped polymer-matrix microporous membrane with a steam bath exchange method and mainly comprises the following steps of: firstly, uniformly dispersing inorganic particles in an organic solvent; then, dissolving a polymer matrix and a pore forming agent in the uniform organic solvent to form transparent gel under the condition of agitation; and finally, preparing the inorganic particle doped polymer-matrix microporous membrane through casting membrane formation and with the steam bath exchange method. The second part is to prepare the ionic liquid plasticized gel-like composite polymer electrolyte and mainly comprises the following steps of: directly soaking the prepared doped polymer-matrix microporous membrane in a mixed solution of imidazole ionic liquid and lithium salt so as to swell and plasticize the polymer-matrix microporous membrane. Because steam bath is adopted to form the membrane and the imidazole ionic liquid is introduced to perform plasticization, the prepared electrolyte membrane has good mechanical strength and flexibility, high ionic conductivity, wide electrochemical stability window and simple preparation process and is easy for realization of industrial production.
Owner:CENT SOUTH UNIV

Crystal boundary diffusion method for improving coercive force and thermal stability of neodymium-iron-boron magnet

The invention discloses a crystal boundary diffusion method for improving the coercive force and the thermal stability of a neodymium-iron-boron magnet, and belongs to the field of rare earth permanent magnet materials. According to the method, a quaternary alloy Dy-Ni-Al-Cu with a low melting point is used as a diffusion source and melted and prepared into a rapid-hardening strip, after coarse breaking, the strip casting is laid around the neodymium-iron-boron magnet, and by the adoption of a heat treatment method, the rapid-hardening strip diffuses and enters the magnet along the crystal boundary. After the processing, the coercive force of the magnet is significantly improved, and the magnetic energy product is improved to a certain extent; meanwhile, since the temperature of the diffusion treatment is low, energy consumption can be reduced, the cost can be lowered, and Nd2Fe14B crystal grains can be prevented from growing up; compared with a coating and magnetron sputtering method, the crystal boundary diffusion method omits a powder preparing and coating process in a coating technology and a thin film preparing process in a magnetron sputtering technology. After the technology processing of the crystal boundary diffusion method, the neodymium-iron-boron magnet with the high coercive force and the high thermal stability is finally obtained.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products