Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

61results about How to "Reduce the first irreversible capacity" patented technology

Lithium-rich manganese-based anode material and method for manufacturing same

The invention discloses a lithium-rich manganese-based anode material and a method for manufacturing the same. The method includes steps of (a), providing mixed solution containing lithium compounds, nickel compounds and manganese compounds, optional titanium compounds, optional iron compounds, optional cobalt compounds or an optional combination of the titanium compounds, the ion compounds and the cobalt compounds; (b), adding complexing agents, catalysts and surfactants into the mixed solution to form pre-coagulated substances; and (c), calcining the pre-coagulated substances to obtain the lithium-rich manganese-based anode material Li[LixNiaMnbM1-a-b-x]O2 or a combination of lithium-rich manganese-based anode materials. The complexing agents, the catalysts and the surfactants are used for forming the pre-coagulated substances, the complexing agents contain resorcinol and formaldehyde, in the molecular formula of the lithium-rich manganese-based anode material, the M represents Ti, Fe, Co or a combination of the Ti, the Fe and the Co, the x is larger than 0 and is smaller than or equal to 0.4, the a is larger than 0 and is smaller than or equal to 0.5, the b is larger than or equal to 0.33 and smaller than or equal to 0.6, and a result of 1-a-b-x is larger than or equal to 0. The lithium-rich manganese-based anode material is of a multi-channel porous structure, is small in grain size, uniform in grain distribution, advanced in porosity and stable in electrochemical performance.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Graphite/silicon@carbon core-shell structure composite spherical cathode material and preparation method thereof

The invention discloses a graphite/silicon@carbon core-shell structure composite spherical cathode material and a preparation method thereof. By means of the material, the volume expansion effect of silicon in the lithium de-intercalation process can be inhibited, and a high-capacity lithium iron battery silicon/carbon composite cathode material is obtained. By means of the technical scheme, a spherical graphite/silicon framework precursor serves as the core of the composite cathode material, and an amorphous pyrolytic carbon or graphite-like carbon material wrapping layer serves as the shell; nanometer or micrometer silicon is embedded in flake graphite cracks to form a graphite framework, the volume expansion effect of silicon in the lithium de-intercalation process is inhibited through the mechanical characteristics of the graphite framework, then a spherical framework is formed by mixing and granulating 3-20 wt% of nanometer or micrometer silicon, 50-80 wt% of flake graphite and 10-40 wt% of amorphous pyrolytic carbon or graphite-like carbon, and an amorphous pyrolytic carbon or graphite-like carbon spherical composite conductive carbon net structure wrapping a graphite/silicon surface is formed.
Owner:四川聚能仁和新材料有限公司

Modified silicon monoxide material for lithium ion battery negative electrode and preparation method thereof

The invention discloses a modified silicon monoxide material and a preparation method thereof. The modified silicon monoxide material is the modified silicon monoxide material used for a lithium battery negative electrode. The modified silicon monoxide material is prepared by the following steps: reacting raw materials silicon, silicon dioxide and metal silicate under high-temperature and vacuum conditions to prepare silicon monoxide, and reacting metal steam with silicon monoxide in the preparation process to form metal silicate in situ; wherein the metal silicate is uniformly dispersed around the silicon and the silicon monoxide to form silicon-containing particles, and the carbon material is coated on the surfaces of the silicon-containing particles. The silicate in the modified siliconmonoxide material is uniformly dispersed, the carbon material is uniformly coated, and the modified silicon monoxide material shows high specific capacity, high initial coulombic efficiency, excellent cycle performance and rate capability when used as the lithium ion battery negative electrode material. Moreover, the preparation method disclosed by the invention is low in raw material price and beneficial to industrial implementation, so that the modified silicon monoxide has a very wide application prospect.
Owner:JIANGXI IAMETAL NEW ENERGY TECH CO LTD

Silicon-based cathode composite material for lithium ion battery and preparation method thereof

ActiveCN102324501ARelief of mechanical stressEliminate volume effectCell electrodesSodium-ion batteryLithium-ion battery
The invention discloses a silicon-based cathode composite material for a lithium ion battery and a preparation method thereof. The cathode composite material is a Si/CuOx/C composite material (0<=x<=1) with a porous structure. Silicon with a porous structure is used as a base, and CuOx particles are inserted in the pores, and carbons with different forms are distributed on a surface and pore walls of the silicon-based material. The preparation method of the cathode composite material comprises steps that silicon material realizes pore-forming through an in situ catalytic reaction between silicon and halogenated hydrocarbon, and reaction condition parameters are regulated to control pore size, distribution and amount of porosity of the silicon material; a post-modification technology is employed to carry out modifications on the surface and the pore walls of the porous silicon, so as to obtain the Si/CuOx/C composite material with a porous structure. The porous silicon-based cathode composite material has low production costs, simple process and no pollution, and is suitable for industrialized production; besides the porous silicon-based cathode composite material has high charge and discharge capacity, small initial irreversible capacity and good cycle performance.
Owner:河北中芯凤华科技发展有限公司

Lithium-rich manganese-based cathode material precursor, cathode material and preparation method thereof

ActiveCN106564967AAccelerates and intensifies the mass transfer processWell mixedMaterial nanotechnologyCell electrodesNickel saltManganese
The invention belongs to the field of electrode material preparation and relates to a lithium-rich manganese-based cathode material precursor, a cathode material and a preparation method thereof. The preparation method comprises the following steps: mixing metal salts (manganese salt, cobalt salt and nickel salt) and a surfactant and water, and dissolving to obtain a metal salt solution; putting a precipitant in water, stirring and dissolving to obtain a precipitant solution; carrying out liquid-liquid coprecipitation reaction on the metal salt solution and the precipitant solution in a hypergravity field reactor, filtering, cleaning, and carrying out vacuum drying so as to obtain a precursor; mixing the precursor and lithium salt and then calcining so as to obtain the lithium-rich manganese-based cathode material. By the coprecipitation method based on the hypergravity technology, the lithium-rich manganese-based cathode material precursor with primary particle being below 100 nm and secondary particle being 1-10 microns is rapidly prepared, and furthermore the prepared cathode material has advantages of uniform component distribution and particle size distribution, small granularity and high activity. Initial irreversible capacity can be reduced, and cycle performance of a lithium ion secondary battery can be enhanced.
Owner:ADVANCED TECHNOLOGY & MATERIALS CO LTD

Preparation method for artificial graphite negative electrode material for lithium ion battery

Disclosed is a preparation method for an artificial graphite negative electrode material for a lithium ion battery. Artificial graphite coke powder with small grain diameter and an organic carbon source are taken as the raw materials; the raw materials are subjected to procedures of mixing, high-temperature treatment, graphitization treatment, sieving and the like; the coke powder and the organic carbon source are mixed in a heating environment, and the effects of coating, mixing and holding, secondary pelleting and the like can be achieved; the small-particle coke powder can form secondary particles under the cohesive action of the organic carbon source; therefore, the problem of anisotropy of the material is solved, and the tap density of the material is improved; meanwhile, the artificial graphite negative electrode material is capable of lowering the material turnover and equipment residual loss, high in yield, simple in procedures, low in energy consumption, environment-friendly, uniform in the coating effect on the surface of the material, and high in consistency; and in addition, the prepared negative electrode material has the characteristics of isotropy, low iron impurity content, low initial irreversible capacity, small volume expansion, high absorbency, high circulation performance, high performance cost ratio, excellent comprehensive performance and the like.
Owner:田东

Conductive polymer-coated silicon composite carbon nanotube anode material and preparation method and application thereof

The invention relates to a preparation method of conductive polymer-coated silicon composite carbon nanotube negative electrode material, In-situ polymerization of polyaniline on submicron or nano-sized silicon surface without organic solvent and simultaneous doping of conductive polymer polyaniline can effectively inhibit the volume expansion of silicon and provide good conductivity for silicon,and then polymerization of polyaniline with [pi]- [pi] conjugate effect, adding pre-dispersed carbon nanotubes, so that polyaniline coated silicon particles are uniformly dispersed and firmly fixed inthe carbon nanotube dispersion system. Carbon nanotubes with high conductivity and elasticity provide stable expansion elastic space and conductivity for polyaniline-coated silicon particles, which can completely solve the volume expansion of silicon and the destruction of negative electrode caused by pulverization. Polyaniline-coated silicon nanocomposite carbon nanotubes were synthesized. Underthe synergistic effect of silicon, polyaniline and carbon nanotubes, the content of elemental silicon can reach 50% and the specific capacity can reach more than 1800 mAh/g.
Owner:淄博巨浪新能源科技有限公司

Lithium ion battery negative material and preparation method thereof

The invention discloses a lithium ion battery negative material and a preparation method thereof. The preparation method comprises the following steps: firstly adding metallic lithium to a non-aqueous solvent to dissolve to form a lithium solution; then adding a complexing agent of which the weight is 1-1.2 times more than the molar weight of the metallic lithium to the lithium solution to obtain a sol solution; then adding a negative material, stirring to obtain suspension liquid; then evaporating the suspension liquid to dryness at the temperature of 30-80 DEG C to obtain a precursor, uniformly grinding, then placing into a vacuum drying box, drying at 120 DEG C for 8-12 hours, and cooling with a furnace; and finally loading the powder obtained by grinding and drying into a corundum boat, placing the corundum boat into a cavity of an inert atmosphere furnace, and sintering at the temperature of 400-800 DEG C for 2-6 hours. According to the preparation method disclosed by the invention, previous lithiation treatment is carried out on the negative material by adopting the lithium sol solution, lithium ions are provided for the formation of an SEI film in a first-time charge-discharge process, the loss of positive lithium ions is reduced and the first-time charge-discharge coulomb efficiency, capacity and circulating property of the negative material are greatly improved.
Owner:李震祺 +1

Graphite negative-electrode material with graphitization degree and hole diameter double-gradient structure, preparation method of material and application of material

The invention belongs to the technical field of lithium ion battery negative-electrode materials, and particularly discloses a graphite negative-electrode material with a graphitization degree and hole diameter double-gradient structure. The graphite negative-electrode material is a carbon material with a core/shell structure, the graphitization degree and the hole diameter of the carbon materialare distributed in a radial gradient manner, the graphitization degree from a core to a shell is gradually reduced, and the hole diameter from the core to the shell is gradually reduced. The inventionfurther provides a preparation method of the graphite negative-electrode material with the double-gradient structure of the graphitization degree and the hole diameter. The graphite negative-electrode material serves as a catalyst in porous carbon pore gaps, and subsequent secondary electrical forging treatment is implemented to prepare the negative-electrode material with the double-gradient structure of the graphitization degree and the hole diameter. The material with the gradient structure has the advantages of high reversible capacity and rate performance, long cycle life and the like.
Owner:湖南宸宇富基新能源科技有限公司

Method for preparing lithium ion battery cathode material by utilizing biomass gasification furnace filter residue

The invention discloses a method for preparing a lithium ion battery cathode material by utilizing biomass gasification furnace filter residue. The method comprises the following steps: (1) mixing the biomass gasification furnace filter residue with a surface active agent to obtain a mixture, grinding the mixture adequately, removing the surface active agent in a water washing manner, carrying out the suction filtration, and obtaining the filter residue for standby use; (2) placing hydrochloric acid into the filter residue obtained in the step (1), adequately removing impurities, and filtering and washing the filter residue to be neutral for standby use; (3) placing the filter residue obtained in the step (2) into a mixed solution of polyethyleneimine and ethnoal, carrying out the oscillation, washing the polyethyleneimine and the ethanol after the adequate oscillation, filtering the mixed solution, and obtaining the filter residue for standby use; (4) placing nitric acid with mass fraction of 55 to 70 percent into the filter residue obtained in the step (3), adequately stirring the nitric acid and the filter residue under the temperature of 35 to 45 DEG C, carrying out the modification, washing the nitric acid, and filtering and drying to obtain the lithium ion battery cathode material. The prepared lithium ion battery cathode material is high in capacity, high in primary efficiency, good in cycling performance, safe and pollution-free; the method is simple in process flow, low in cost and applicable to the mass production.
Owner:WUHAN KAIDI ENG TECH RES INST CO LTD

Technology for processing cladded superfine graphite powder

The invention relates to a processing technology for preparing cladded superfine graphite powder for composite graphite cathode materials of multiple types of secondary batteries in a high-temperature semiliquid spraying manner. The technology comprises the following steps: firstly, putting 60-90% of powdered graphite into a high-temperature reaction kettle protected by an inert gas at 300-500 DEG C; heating 10-40% of nanoscale mesophase pitch for a cladding layer to the semiliquid state and then spraying nanoscale droplets into the high-temperature reaction kettle at a high speed by a nano nozzle, mixing and cladding the powdered graphite for 2-3 hours to form cladded graphite; then drying the cladded graphite in hot air at 200 DEG C for 2-3 hours; carrying out carbonizing treatment at 700-1200 DEG C and graphitizing treatment at 1,000-3,000 DEG C, so as to obtain the balanced cladded superfine graphite powder. The prepared product is good in cladding uniformity and sphere integrity, low in irreversible capacity for the first time, high in circulating stability, low in charge and discharge voltage, and long in circulating service life, and can be widely applied to cathode materials of multiple typs of secondary batteries.
Owner:于洪洲

Silicon-based cathode composite material for lithium ion battery and preparation method thereof

ActiveCN102324501BRelief of mechanical stressEliminate volume effectCell electrodesSodium-ion batteryLithium-ion battery
The invention discloses a silicon-based cathode composite material for a lithium ion battery and a preparation method thereof. The cathode composite material is a Si / CuOx / C composite material (0<=x<=1) with a porous structure. Silicon with a porous structure is used as a base, and CuOx particles are inserted in the pores, and carbons with different forms are distributed on a surface and pore walls of the silicon-based material. The preparation method of the cathode composite material comprises steps that silicon material realizes pore-forming through an in situ catalytic reaction between silicon and halogenated hydrocarbon, and reaction condition parameters are regulated to control pore size, distribution and amount of porosity of the silicon material; a post-modification technology is employed to carry out modifications on the surface and the pore walls of the porous silicon, so as to obtain the Si / CuOx / C composite material with a porous structure. The porous silicon-based cathode composite material has low production costs, simple process and no pollution, and is suitable for industrialized production; besides the porous silicon-based cathode composite material has high charge and discharge capacity, small initial irreversible capacity and good cycle performance.
Owner:河北中芯凤华科技发展有限公司

Preparation method of composite material containing multi-walled carbon nanotubes and tin-cobalt alloy nanoparticles

The invention discloses a preparation method a composite material containing multi-walled carbon nanotubes and tin-cobalt alloy nanoparticles. The preparation method comprises modifying the multi-walled carbon nanotubes with polyelectrolytes; preparing diethylene glycol solution containing sodium borohydride; preparing diethylene glycol solution containing stannic chloride and cobalt chloride; dispersing the modified multi-walled carbon nanotubes in the diethylene glycol solution containing sodium borohydride, and heating to a certain temperature under the protection of argon; adding the diethylene glycol solution containing stannic chloride and cobalt chloride into the above mixture solution while heating and stirring; reacting at 160 to 220 centigrade for 30 to 60 minutes; cooling to room temperature; adding ethanol; centrifuging to separate; and drying to obtain the final products. The method provided by the invention is simple, and the obtained composite material has a unique structure. The tin-cobalt alloy nanoparticles are uniformly adhered on the surface of the multi-walled carbon nanotubes, so that the composite material used as the negative electrode material of a lithium ion battery has lower reduction of irreversible capacity and higher cycle stability.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products