Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

950results about How to "Low ash" patented technology

Method for extracting heavy liquefaction oil and intermediate-phase bitumen matter from coal liquefaction residuals and application thereof

The invention provides a method for extracting heavy liquefaction oil and an intermediate-phase bitumen matter from coal liquefaction residuals and application thereof. The method comprises the following steps of: adding coal liquefaction residual powder and an extraction solvent to a stirring kettle together for extraction to obtain extraction liquid and extraction residues; carrying out solid-liquid separation on the obtained extraction liquid and extraction residues; carrying out steam stripping on the obtained extraction residues, and recovering an organic phase after oil-water separation; mixing the extraction liquid with the organic phase, and then delivering into a solvent recovery unit; recovering the extraction solvent for recycling use or being returned to a liquefaction productprocessing unit by using a distillation method and/or an evaporation method, wherein residuals obtained after the extraction solvent is recovered are liquefaction residual extractives; delivering theobtained liquefaction residual extractives into a heat treatment unit, and separating the heavy liquefaction oil from the intermediate-phase bitumen matter by using a heating dry distillation method;and adding the obtained heavy liquefaction oil and other recycling solvents in a direct liquefaction process to a coal liquefaction solvent hydrogenation unit together.
Owner:CHNA ENERGY INVESTMENT CORP LTD +2

Method for preparing carbon molecular sieve adsorbent

The invention discloses a method for preparing a carbon molecular sieve adsorbent. The steps are as follows: (1) solidification: polymer is used as a raw material and is arranged in a thermostatic drying oven to be solidified; (2) dry distillation: the solidified macromoleclar polymer is pulverized by a pulverizer and then is processed by dry distillation; (3) fine pulverization: the macromoleclar polymer which is pulverized and processed by dry distillation is further processed by fine pulverization in the premise that the particle diameter of the macromoleclar polymer does not meet the requirement, and ball milling or gas milling is used for preparing micro-particles; (4) molding: the macromoleclar polymer which is processed by fine pulverization is mixed and uniformly stirred with agglomerant by mass ratio, and the mixture obtained is pressed and molded by an oil hydraulic press and then is dried; (5) carbonization and activation: under the state of N2 protection, temperature is raised for carbonization so as to increase the CMS surface area; and (6) carbon precipitation and hole adjustment: the hole adjustment agent is decomposed in the carbon molecular sieve for carbon deposition, the particle diameter is shortened and is enabled to be uniform, and the carbon molecular sieve product can be obtained after cooling. The carbon molecular sieve has the advantages of high CH4 adsorbing capacity, high selectivity factor of adsorption, favorable strength, low cost and no pollution, and the performance achieves or surpasses the standard of a sample of Japan carbon molecular sieve.
Owner:ANHUI UNIV OF SCI & TECH

Agricultural fibre fuel pellets

A method of preparing fuel pellets includes the steps of providing a feedstock in the form of agricultural hull fibres having a moisture content of about 10 to about 16%; and compressing and extruding the agricultural fibre feedstock through a die to obtain fuel pellets in the form of small cylinders having a diameter of about ⅜ inch to ¾ inch or more, said pellets having an ash content of about 1.1% to about 20% by weight and a calorific value of about 7,000 BTUs per pound of fuel on a dry basis. The agricultural hull fibres may be derived from all whole grains and seeds. For example, are comprised of at least one of corn bran fibre, rye bran fibre; oat bran fibre, rice bran fibre, soy bran fibre, canola bran fibre and wheat bran fibre. The method may include the step of pre-treating the agricultural whole grain and seed hull fibre feedstock with high temperature steam before being formed into pellets at a sufficient temperature and sufficient time to activate hemicellulose within the fibre as a binding agent. The method may include the step of mixing the agricultural whole grain and seed hull fibre feedstock with a sequestering agent before being formed into pellets for sequestering alkali metal vapors and raising the fusion point of the inorganic elements during combustion of the pellets. The sequestering agent may be calcium carbonate added in amounts up to about 0.5% by weight. The pellets contain additives comprised of ammonium nitrate, calcium, manganese, magnesium, aluminum, barium, iron, potassium and amorphous silicate, which sequester potassium and chlorides and alter the fusion point of the inorganic elements present in the fuel.
Owner:EVERGREEN BIOFUELS

Method for preparing porous carbon material by using magnesium oxide template in cooperation with activation of potassium hydroxide

The invention discloses a method for preparing a porous carbon material by using a magnesium oxide template in cooperation with the activation of potassium hydroxide, and belongs to the technical field of carbon materials and microwave chemistry. The method comprises the following steps of: grinding coal tar pitch serving as a carbon source, nano magnesium oxide serving as a template and the potassium hydroxide serving as an activating agent; transferring the mixture to a corundum crucible; and putting into a microwave reactor, performing one-step microwave heating activation, and thus obtaining the porous carbon material for an electrochemical capacitor, wherein the specific surface area of the obtained porous carbon material is between 439 and 1,394m<2> / g, the total pore volume is between 0.23 and 0.94cm<3>, the average pore size is between 1.95 and 3.36mm, the ratio of the volume of a non-micro pore to the total pore volume is between 26.1 and 86.2 percent, and the porous carbon yield is between 37.8 and 84.9 percent. The invention has the advantages that: the method is quick and energy-saving; and the prepared porous carbon is used as an electrode material of the electrochemical capacitor and has extremely high stability and high comprehensive performance.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Sludge charcoal for repairing heavy metal contaminated soil and preparation method of sludge charcoal

The invention belongs to the technical field of in-situ repair of heavy metal contaminated soil. Municipal sludge is used for preparing sludge-based charcoal through thermophilic thermolysis. The charcoal can be used as a repairing agent for the heavy metal contaminated soil. The sludge charcoal repairing agent comprises thickened sludge and palygorskite. A final black product namely the sludge-based charcoal is produced through the steps of performing biological and physical anhydration on sludge, then mixing the sludge after the biological and physical anhydration with the palygorskite, performing feeding into an atmosphere furnace, and then performing thermophilic thermolysis. The sludge charcoal is produced from the following components of 5-10% of the palygorskite and the balance of thethickened sludge. According to the sludge charcoal disclosed by the invention, the municipal sludge is subjected to decrement and harmless treatment, so that the municipal sludge can enter cycle of material and energy in natural environment again, and the difficult problem of treating and disposing the sludge is solved. The sludge charcoal is added to the heavy metal contaminated soil, so that heavy metal contaminated substances can be effectively solidified, the purposes of being durable and stable in repairing effect and being free from secondary pollution are realized, and the sludge charcoal is an ideal soil heavy metal contamination repairing agent with low cost.
Owner:LANZHOU JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products