Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1643 results about "Weight distribution" patented technology

Weight distribution is the apportioning of weight within a vehicle, especially cars, airplanes, and trains. Typically, it is written in the form x/y, where x is the percentage of weight in the front, and y is the percentage in the back.

Image processing and analysis of individual nucleic acid molecules

A method for observing and determining the size of individual molecules and for determining the weight distribution of a sample containing molecules of varying size, which involves placing a deformable or nondeformable molecule in a medium, subjecting the molecule to an external force, thereby causing conformational and/or positional changes, and then measuring these changes. Preferred ways to measure conformational and positional changes include: (1) determining the rate at which a deformable molecule returns to a relaxed state after termination of the external force, (2) determining the rate at which a molecule becomes oriented in a new direction when the direction of the perturbing force is changed, (3) determining the rate at which a molecule rotates, (4) measuring the length of a molecule, particularly when it is at least partially stretched, or (5) measuring at least one diameter of a spherical or ellipsoidal molecule. Measurements of relaxation, reorientation, and rotation rates, as well as length and diameter can be made using a light microscope connected to an image processor. Molecule relaxation, reorientation and rotation also can be determined using a microscope combined with a spectroscopic device. The invention is particularly useful for measuring polymer molecules, such as nucleic acids, and can be used to determine the size and map location of restriction digests. Breakage of large polymer molecules mounted on a microscope slide is prevented by condensing the molecules before mounting and unfolding the molecules after they have been placed in a matrix.
Owner:WISCONSIN ALUMNI RES FOUND

Axle weight distribution system

The present invention relates to a system for adjusting weight distribution throughout all axle groups of the truck and trailer. The trailer has at least one axle group mounted on a pair of rails attached to the frame of the trailer. These axle groups are locked in position on the rails by locking pins. The system for adjusting weight distribution according to the present invention measures the weight on every axle group on the truck and trailer. The measurement may be of weight directly by load cells etc. or indirectly, by taking measurements from the air suspension system to calculate weight. The measurements are delivered as an electrical signal to one or more microprocessors capable of receiving the electrical signals and calculating the optimum position of the axle group on the trailer. The position of the trailer axle groups relative to the rails is also determined and the position delivered to the microprocessor(s). The microprocessor(s) is programmed to calculate the weight on each axle group and determine any change in position of the trailer axle group(s) on the rails to optimize the weight distribution. The information is presented to the driver on a display located in the cab of the truck. The system further includes apparatus to lock and unlock the locking pins that lock the trailer axle group(s) in position on the rails. The system also includes a communication interface between the truck and the trailer.
Owner:WHEEL MONITOR

Image processing and analysis of individual nucleic acid molecules

A method for observing and determining the size of individual molecules and for determining the weight distribution of a sample containing molecules of varying size, which involves placing a deformable or nondeformable molecule in a medium, subjecting the molecule to an external force, thereby causing conformational and/or positional changes, and then measuring these changes. Preferred ways to measure conformational and positional changes include: (1) determining the rate at which a deformable molecule returns to a relaxed state after termination of the external force, (2) determining the rate at which a molecule becomes oriented in a new direction when the direction of the perturbing force is changed, (3) determining the rate at which a molecule rotates, (4) measuring the length of a molecule, particularly when it is at least partially stretched, or (5) measuring at least one diameter of a spherical or ellipsoidal molecule. Measurements of relaxation, reorientation, and rotation rates, as well as length and diameter can be made using a light microscope connected to an image processor. Molecule relaxation, reorientation and rotation also can be determined using a microscope combined with a spectroscopic device. The invention is particularly useful for measuring polymer molecules, such as nucleic acids, and can be used to determine the size and map location of restriction digests. Breakage of large polymer molecules mounted on a microscope slide is prevented by condensing the molecules before mounting and unfolding the molecules after they have been placed in a matrix.
Owner:WISCONSIN ALUMNI RES FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products