Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

849 results about "Engine braking" patented technology

Engine braking occurs when the retarding forces within an engine are used to slow down a motor vehicle, as opposed to using additional external braking mechanisms such as friction brakes or magnetic brakes.

Bi-directional overrunning clutch

A bi-directional overrunning clutch is disclosed for controlling torque transmission between a secondary drive shaft and secondary driven shafts. The overrunning clutch includes a pinion input shaft in a differential housing that engages with a clutch housing rotatably disposed within the differential housing. At least one race is located adjacent to the clutch housing and is engaged with an output shaft. A cage is located between the race and the clutch housing. The cage is movable with respect to the clutch housing. A <DEL-S DATE="20030304" ID="DEL-S-00001"/>first<DEL-E ID="DEL-S-00001"/> coil is mounted within the differential housing adjacent to the cage and is adapted to produce an electromagnetic field when energized which causes the cage to drag with respect to the clutch housing. The dragging of the cage with respect to the clutch housing positions <INS-S DATE="20030304" ID="INS-S-00001"/>rolls within <INS-E ID="INS-S-00001"/>the cage to engage the clutch housing with the race when wheels on a primary drive shaft lose traction. <DEL-S DATE="20030304" ID="DEL-S-00002"/>A<DEL-E ID="DEL-S-00002"/> <INS-S DATE="20030304" ID="INS-S-00002"/>If desired a <INS-E ID="INS-S-00002"/>second coil <DEL-S DATE="20030304" ID="DEL-S-00003"/>is<DEL-E ID="DEL-S-00003"/> <INS-S DATE="20030304" ID="INS-S-00003"/>may be <INS-E ID="INS-S-00003"/>mounted within the differential housing adjacent <DEL-S DATE="20030304" ID="DEL-S-00004"/>adjacent<DEL-E ID="DEL-S-00004"/> to the cage. The second coil is adapted to produce an electromagnetic field when energized which advances cage with respect to the clutch housing causing the clutch housing to engage with the races. When the second coil is activated, the output shaft drives the pinion input shaft producing engine braking. An electronic control system is utilized to control the energizing of the coils.
Owner:HILLIARD

Integrated engine brake with mechanical linkage

Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking operation (10). The engine includes exhaust valve train components comprising at least one exhaust valve (300) and at least one cam (230) for cyclically opening and closing the at least one exhaust valve (300). The apparatus comprises actuation means (100) having at least one component integrated into at least one of the exhaust valve train components, such as a rocker arm (210) or a valve bridge (400). The actuation means (100) has an inoperative position and an operative position. In the inoperative position, the actuation means (100) is retracted and the small braking cam lobes (232&233) are skipped to generate a main valve lift profile (220m) for the normal engine operation (20). In the operative position, the actuation means (100) is extended to form a mechanical linkage so that the motion from all the cam lobes (220, 232&233) is transmitted to the at least one exhaust valve (300) for the engine braking operation (10). The apparatus further comprises control means (50) for moving the actuation means (100) between the inoperative position and the operative position to achieve the conversion between the normal engine operation (20) and the engine braking operation (10). The apparatus also includes valve lash adjusting mechanism, oil retraining means (350), and engine brake reset means (150).
Owner:SHANGHAI UNIVERSOON AUTOPARTS CO LTD

Integrated engine brake with mechanical linkage

ActiveUS8065987B2Fast response (on and off) timeLess componentsValve drivesOutput powerExhaust valveEngineering
Apparatus and method are disclosed for converting an internal combustion engine from a normal engine operation (20) to an engine braking operation (10). The engine includes exhaust valve train components comprising at least one exhaust valve (300) and at least one cam (230) for cyclically opening and closing the at least one exhaust valve (300). The apparatus comprises actuation means (100) having at least one component integrated into at least one of the exhaust valve train components, such as a rocker arm (210) or a valve bridge (400). The actuation means (100) has an inoperative position and an operative position. In the inoperative position, the actuation means (100) is retracted and the small braking cam lobes (232&233) are skipped to generate a main valve lift profile (220m) for the normal engine operation (20). In the operative position, the actuation means (100) is extended to form a mechanical linkage so that the motion from all the cam lobes (220, 232&233) is transmitted to the at least one exhaust valve (300) for the engine braking operation (10). The apparatus further comprises control means (50) for moving the actuation means (100) between the inoperative position and the operative position to achieve the conversion between the normal engine operation (20) and the engine braking operation (10). The apparatus also includes valve lash adjusting mechanism, oil retraining means (350), and engine brake reset means (150).
Owner:SHANGHAI UNIVERSOON AUTOPARTS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products