Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1782 results about "Vehicle dynamics" patented technology

For vehicles such as cars, vehicle dynamics is the study of how the vehicle will react to driver inputs on a given solid surface. Vehicle dynamics is a part of engineering primarily based on classical mechanics.

Trajectory tracking control method and control device for driverless vehicle

The invention relates to a trajectory tracking control method and a control device for a driverless vehicle. The control method comprises that error of present driving trajectory and a reference trajectory of a vehicle is calculated by a data preprocessor, a target performance indicator function which is corresponding to the present driving model is obtained simultaneously; an upper layer controller predicts driving states of the vehicle over a period of time through a vehicle dynamics model; transition switch is conducted to function parameters according to switching control algorithm, and a performance indicator function at present sampling time is obtained; optimal controlled quantity of present time is calculated by considering performance requirement constraint conditions at the same time according to predicted driving states and the performance indicator function; a lower layer controller calculates throttle opening, braking pedal pressure and steering wheel turning angle according to the optimal controlled quantity; and the control device comprises the data preprocessor, the upper layer controller and the lower layer controller. Compared with the prior art, the trajectory tracking control method and the control device for the driverless vehicle have the advantages of being good in control effect, high in practicability, capable of improving stability and safety of vehicles and the like.
Owner:TONGJI UNIV

Dangerous goods transport vehicle dynamic monitoring method and early warning device

The invention relates to a dangerous goods transport vehicle dynamic monitoring method and an early warning device. The method comprises the following steps: (1) arranging the early warning device which comprises a collision, rollover and temperature and pressure early warning module, an early warning arithmetic and a threshold value; (2) acquiring the acceleration, the dip angle, the temperature/pressure and image signals of a goods wagon; (3) carrying out calculation on each signal and comparing the signal with the preset threshold value and sending out a corresponding alarm command; (4) displaying alarm information and sending the alarm information to a remote monitoring center through a global position system/general packet radio system (GPS/GPRS); (5) after the alarm is completed, returning to the step (2); and (6) carrying out real-time monitoring on a goods state and the alarm information by a driver through displaying. The corresponding early warning device comprises the GPS/GPRS, cameras, a card reader, a triaxial acceleration sensor, a display screen, an artificial alarm, a buzzing alarm, a temperature/pressure sensor, a dip angle sensor, a secure digital (SD) card storage and an electronic control unit which comprises a microprocessor. The collision, rollover and temperature and pressure early warning module is arranged in the microprocessor. The invention can be used for carrying out real-time monitoring on collision, rollover and temperature and pressure, thereby being beneficial to driving safety and rescue operation.
Owner:RES INST OF HIGHWAY MINIST OF TRANSPORT

Vehicle adaptive cruise control system

ActiveCN103754221AEnsure lane change safetyImprove functional limitationsExternal condition input parametersVehicle dynamicsControl system
The invention relates to a vehicle adaptive cruise control system. The vehicle adaptive cruise control system is characterized in that an information collecting unit, a lane changing early warning unit, an adaptive cruise control unit and a vehicle dynamics unit are included; the information collecting unit collects and processes the driving state information of a vehicle, and sends the driving state information to the lane changing early warning unit and the adaptive cruise control unit; the lane changing early warning unit calculates the lane changing minimum safety distance between the own vehicle and surrounding vehicles according to the received effective vehicle movement information, and judges lane changing risks according to a calculation result, an early warning is carried out on the vehicle according to a judgment result, and the judgment result is sent to the vehicle adaptive cruise control unit; the vehicle adaptive cruise control unit selects a control mode according to the vehicle movement information and the lane changing risk judgment result, calculates expected longitudinal acceleration needed by vehicle longitudinal driving, and sends the calculated expected longitudinal acceleration to the vehicle dynamics unit; the vehicle dynamics unit converts the expected longitudinal acceleration into an expected air valve opening degree or braking pressure and sends the expected air valve opening degree or the braking pressure to a vehicle object, and the longitudinal control over the vehicle object is completed.
Owner:TSINGHUA UNIV

Vehicle Dynamics Control Device

A vehicle dynamics control device includes: a control unit that executes braking/driving torque control for controlling at least either a braking torque or a driving torque at each wheel based upon at least either external information pertaining to an environment of a vehicle or vehicle information that includes operation input information indicating an operation input by a driver and a vehicle dynamics information. And the operation input information includes a lateral motion operation index pertaining to a lateral motion operation executed to generate a lateral motion in the vehicle; the vehicle dynamics information includes a longitudinal acceleration generated in the vehicle and a lateral motion index indicating a lateral motion occurring in the vehicle; and the control unit determines a handling assurance acceleration limit with a maximum longitudinal acceleration value that assumes a substantially linear proportional relationship with the lateral motion operation index and the lateral motion index over a range in which the lateral motion operation index assumes a value equal to or less than a predetermined value or the lateral motion index assumes a value equal to or less than a predetermined value, and executes the braking/driving torque control by setting the handling assurance acceleration limit as an upper limit to a longitudinal acceleration to be generated in the vehicle under the braking/driving torque control.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products