Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

13555results about "Position/course control in three dimensions" patented technology

Authentication systems and methods for generating flight regulations

Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and / or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Owner:SZ DJI TECH CO LTD

Combination of unmanned aerial vehicles and the method and system to engage in multiple applications

This invention relates to an Unmanned Aerial Vehicle hereinafter called “Mother UAV” member (11) capable of carrying modules of Sub Unmanned Aerial Vehicle members (12) hereinafter called “Sub UAV” member. More particularly, the method and system that is capable of communicating via satellite and remote control technology wherein ejecting said Sub UAV members (12) from the Mother UAV member (11) wherein Sub UAV members (12) autonomously fly in sequence in a coordinated manner with the Mother UAV member (11), and capable of engaging in multiple missions in high, medium, low altitude, and surface, also communication with under sea submarines (27). Further, comprises of a method and system that the Sub UAV members (12) are able to return back to the Mother UAV member (11) after the mission is completed and be firmly secured to the flatbed (14) of the Mother UAV member (11). The present invention is specifically designed for multifunctional and multipurpose applications where humans and other vehicles are unable to access, for civil, commercial and military purposes.
Owner:DE SILVA SHELTON GAMINI

Aerial system and vehicle for continuous operation

An aerial vehicle system for gathering data may comprise a Waypoint Location, wherein the Waypoint Location comprises an arresting cable; a Ground Control Station, wherein the Ground Control Station comprises a charging cable; and an aerial vehicle, wherein the aerial vehicle comprises an onboard battery, a capturing hook and a sensor payload for generating surveillance data. The aerial vehicle may be configured to autonomously travel between the Waypoint Location and the Ground Control Station. The aerial vehicle may be configured to couple with the arresting cable via the capturing hook. The aerial vehicle may be configured to electronically couple with the charging cable via the capturing hook to facilitate charging the aerial vehicle's onboard battery.
Owner:AURORA FLIGHT SCI CORP

Package delivery by means of an automated multi-copter uas/uav dispatched from a conventional delivery vehicle

Methods and associated systems for autonomous package delivery utilize a UAS / UAV, an infrared positioning senor, and a docking station integrated with a package delivery vehicle. The UAS / UAV accepts a package for delivery from the docking station on the delivery vehicle and uploads the delivery destination. The UAS / UAV autonomously launches from its docked position on the delivery vehicle. The UAS / UAV autonomously flies to the delivery destination by means of GPS navigation. The UAS / UAV is guided in final delivery by means of a human supervised live video feed from the UAS / UAV. The UAS / UAV is assisted in the descent and delivery of the parcel by precision sensors and if necessary by means of remote human control. The UAS / UAV autonomously returns to the delivery vehicle by means of GPS navigation and precision sensors. The UAS / UAV autonomously docks with the delivery vehicle for recharging and preparation for the next delivery sequence.
Owner:WORKHORSE GRP INC

Unmanned Aerial Delivery System

An unmanned aerial vehicle delivery system utilizes an unmanned aerial vehicle (UAV) to deliver packages between an initiation point and multiple delivery points at a raised elevation. The UAV flies between points in an organized manner, using logistical, maintenance and safety software, commands from a delivery organization, and guidance tools to coordinate deliveries. One advantage of the system is that the UAV engages the delivery points at a raised elevation, rather than the ground level. The UAV docks through an elevated structure at the delivery point for delivering the package and replenishing a power source. The package is conveyed from a docking end and through a central shaft of the elevated structure by means of an elevator. The package then travels to a lower structure, such as a house or office, for pickup. After completion of the delivery, the UAV replenishes its power source and / or continues on the delivery route.
Owner:MARTIN JOSEPH

Multi-UAV (unmanned aerial vehicle) dynamic formation control method

The invention discloses a multi-UAV (unmanned aerial vehicle) dynamic formation control method, and belongs to the technical field of flight control. The multi-UAV dynamic formation control method includes steps as follows: step 1, a formation keeping method; step 2, an obstacle avoidance method; and step 3, a behavior-based formation process, wherein the behavior-based formation process includes behavior decomposition and control realization. The method solves the defect that the traditional virtual structure manner formation control has higher communication quality requirement; the behavior-based formation control method is introduced to lower the requirement of formation wireless data link update rate and enhances the obstacle avoidance capability of the UAV group formation; and aiming at the defect that the traditional behavior-based manner formation control cannot keep good formation rigidity, a virtual structure is introduced for reference. On the premise of keeping the relatively stable formation, the capability of obstacle and threat avoidance of a microminiature UAV can be enhanced, and the method has a certain reference value for UAV group cooperation low-altitude penetration.
Owner:BEIHANG UNIV

System and method for automated traffic management of intelligent unmanned aerial vehicles

A drone traffic management system comprising a computer comprising memory means for storing origin coordinates indicating an origin location of a drone, destination coordinates indicating a destination of the drone, and traffic management factors located between the origin location of the drone and the destination of the drone; and processing means for controlling the flight of a drone. This is accomplished by calculating a flight path for the drone to fly automatically from the origin location to the destination location without manual intervention, sending the flight path to the drone, receiving location data of the drone as it travels from the origin location to the destination, re-calculating the flight path of the drone as a function of the traffic management factors and the location data of the drone, and sending the re-calculated flight path to the drone.
Owner:POSTREL RICHARD

Flight path planning method based on sparse A* algorithm and genetic algorithm

The invention relates to a flight path planning method based on a sparse A* algorithm and a genetic algorithm and belongs to the technical field of flight path planning of an unmanned aerial vehicle (UAV). According to the characteristics of flight path planning, the method comprises the following steps: planning an initial reference flight path by the utilization of the sparse A*search (SAS) algorithm, wherein constraint conditions are combined into algorithm search, so that useless nodes in a search space can be effectively deleted and the search time is shortened; and when emergent threat occurs during real-time flight of the UAV, performing real-time flight path planning by the utilization of the genetic algorithm and generating a flight path with local optimum or approximate optimum until the threat disappears and the UAV returns the original global optimum reference flight path and continues flying. The method provided by the invention has high real-time performance and rapidity; the searched flight path is closer to the actual UAV optimal flight path; and the method can be applied to the technical fields of robot path planning, urban vehicle path planning and the like under complex environments.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Feedback to facilitate control of unmanned aerial vehicles (UAVs)

Various techniques are described to facilitate controlling an unmanned aerial vehicle (UAV) and viewing feedback received from a UAV. A graphical user interface (GUI) is provided that allows a user to view a display window. The display window may indicate structures or portions of structures in which additional image data is desired by highlighting these portions within the display window. Static imagery may be leveraged to provide smooth and consistent feedback transitions. When a delay exists between the time the UAV sends live video data and the time it may be displayed in the GUI, the static images may be shown in the display window initially until the live video data may be displayed. The opacity of structures included in an initial display window may also transition to a greater opacity over time, with the live video eventually being displayed.
Owner:STATE FARM MUTUAL AUTOMOBILE INSURANCE

Method and apparatus for finding the position of a mechanical axis of a limb

A method of finding the position of a mechanical axis running in the longitudinal direction through a limb that is rotatably supported by its first end in a center of rotation that is not fixed and is not accessible for the mechanical determination of coordinates, by means of an optical coordinate-measurement device with an indicator to detect measurement-point coordinates in one rotational position of the limb, such that, for each rotational position, a multi-point indicator rigidly attached near the second end of the limb signals several measurement-point coordinates, and, from the sets of measurement-point coordinates detected in a plurality of rotational positions, at least one group is selected that can be assigned to the same site of the center of rotation, and the measurement-point-coordinate sets assigned to this site of the center of rotation are used to calculate the mechanical axis.
Owner:PLUS ENDOPROTHETIK AG

System and method for processing unmanned aerial vehicle polling image

The invention discloses a system and method for processing an unmanned aerial vehicle polling image. The system comprises an unmanned aerial vehicle polling image processing system body which comprises a human-computer interaction module. After the human-computer interaction module obtains a user instruction, a main control panel analyzes the user instruction and transmits the analyzed instruction to a data receiving and transmitting controller, the data receiving and transmitting controller sends a parameter configuration instruction to corresponding peripheral equipment according to the instruction and transmits an instruction execution result back to the main control panel, and the main control panel processes the execution result of the parameter configuration instruction and then sends processed information to the human-computer interaction module so that the information can be displayed to a user. The main control panel is respectively communicated with a secondary controller, a power supply module, a wireless communication module, a data storage module, a locating module, a distance measuring meter and a height gauge. The system and the method improve the automation degree and the informationization degree of polling image processing, improve the efficiency of searching for and processing the polling result, and lower the cost of processing the polling result.
Owner:STATE GRID INTELLIGENCE TECH CO LTD

Unmanned aerial vehicle obstacle avoidance controlling method

The invention discloses an unmanned aerial vehicle obstacle avoidance controlling method. An unmanned aerial vehicle subsystem and a ground station subsystem are arranged, the unmanned aerial vehicle subsystem comprises an embedded flight controller and an airborne terminal of a wireless data chain, a satellite positioning receiver and a height sensor are arranged in the embedded flight controller, the ground subsystem comprises an embedded monitoring computer and a ground terminal of the wireless data chain, and an electronic map containing geographic information of obstacles is arranged in the embedded monitoring computer. On the electronic map in the embedded monitoring computer of the ground station subsystem, the geographic information of the obstacles in a flight area is determined, virtual obstacle polygonal cylinders are established, shape data of the virtual obstacle polygonal cylinders are downloaded in the embedded flight controller which obtains the current position of the unmanned aerial vehicle and calculates space correlation between the unmanned aerial vehicle and the obstacle polygonal cylinders, track-shifting instruction of the unmanned aerial vehicle is generated, and automatic obstacle avoidance of the unmanned aerial vehicle is realized.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Device and method for determining teat positions

A device for determining the teat positions of a dairy animal after milking. The device is provided with at least one position-measuring device for determining a position of a teat prior to the milking of the dairy animal and for emitting a position signal corresponding to the teat position. The position-measuring device generates individual teat position signals and a control unit determines on the basis of the teat position signals determined before the milking, planes of symmetry extending substantially parallel to the teats. The expected positions are calculated with respect to the planes of symmetry.
Owner:LELY ENTERPRISES

Unmanned aerial vehicle autonomous obstacle detection system and method based on binocular vision

InactiveCN105222760ARealize the function of effective obstacle avoidanceRealize the function of obstacle avoidanceTransmission systemsPicture taking arrangementsUncrewed vehicleObstacle avoidance
The invention relates to an unmanned aerial vehicle autonomous obstacle detection system and method based on binocular vision. The unmanned aerial vehicle autonomous obstacle detection system and method based on the binocular vision are characterized in that the system comprises a binocular visual system, other sensor modules and a flight control system which are mounted on an unmanned aerial vehicle; the method comprises the steps that the binocular visual system acquires visual information of the flight environment of the unmanned aerial vehicle, and obstacle information is obtained through processing; other sensor units acquire state information of the unmanned aerial vehicle; the flight control system receives the obstacle information and the state information of the unmanned aerial vehicle, establishes a flight path and generates a flight control instruction to send to the unmanned aerial vehicle; the unmanned aerial vehicle flies by avoiding obstacles according to the flight control instruction. According to the unmanned aerial vehicle autonomous obstacle detection system and method based on the binocular vision, the vision information is fused with other sensor information, the flight environment information is perceived, flight path control and path planning are conducted to avoid the obstacles, the problem of vision obstacle avoidance of the unmanned aerial vehicle is effectively solved, and the capacity of completing vision obstacle avoidance by means of a vehicle-mounted camera is achieved.
Owner:一飞智控(天津)科技有限公司

Image-processing-based unmanned plane accurate position landing method

The invention discloses an image-processing-based unmanned plane accurate position landing method, which comprises the following steps: (1) a GPS (global position system) satellite navigation system enables an unmanned plane to be located above a ground parking apron; (2) an air pressure height measurement gauge and a distance measurement module of an ultrasound radar are combined to control the ground clearance for the unmanned plane to land; (3) a vision module identifies a coarse positioning identification domain in real time, and combines Hough Transform and RGB mean value method and gate position identification to process a coordinate of a targeted landing point; (4) when landing of the unmanned plane meets the threshold condition of the coarse positioning identification domain, the algorithm in the step (3) is utilized to perform accurate positioning treatment on the accurate positioning identification domain; and (5) the unmanned plane is controlled for accurate landing by taking the treated deviation value as the input quantity and adopting the double PID algorithm. According to the invention, the defect that insufficient GPS accuracy of the unmanned plane causes a fault landing is overcome, the intelligence for the unmanned plane control is improved, and the cost for using an accurate sensor is greatly reduced.
Owner:GUANGDONG UNIV OF TECH

Electrical remote-control and remote-power flying saucer

The purpose of the invention is a light aircraft, remotely supplied and remotely controlled, propelled by electrical motors coupled to propellers, this device being able to perform stationary flight and to move in the three space dimensions in a controlled way. The system includes an aircraft (1), a control unit (3) and a handling unit (4). The aircraft comprises four propellers, each of them driven by a electric motor, a gyroscopic device, tilt sensors, a yaw sensor and an extrenal protective body. The invention also describes the method for the fliht closed loop control. The main purpose of this invention is to provide a enjoyable and educative toy, mainly intended for indoor flight. In a variant of the invention, the aircraft is fitted with a miniaturized video camera, in order to perform remote inspections on buildings or elements difficult to access.
Owner:LOUVEL PHILIPPE

System, method and apparatus for organizing groups of self-configurable mobile robotic agents in a multi-robotic system

A system of self-organizing mobile robotic agents (MRAs) in a multi-robotic system (MRS) is disclosed. MRAs cooperate, learn and interact with the environment. The system uses various AI technologies including genetic algorithms, genetic programming and evolving artificial neural networks to develop emergent dynamic behaviors. The collective behaviors of autonomous intelligent robotic agents are applied to numerous applications. The system uses hybrid control architectures. The system also develops dynamic coalitions of groups of autonomous MRAs for formation and reformation in order to perform complex tasks.
Owner:SOLOMON RES

Aircraft Traffic Separation System

A method and apparatus for managing separation between vehicles. A closest point of approach between a first vehicle traveling along a first path and a second vehicle traveling along a second path is predicted. A number of compensation commands for altering the first path of the first vehicle are generated using the closest point of approach and a desired level of separation between the first vehicle and the second vehicle. The number of compensation commands is integrated with a number of control commands for the first vehicle to form a final number of control commands configured to maneuver the first vehicle to substantially maintain the desired level of separation between the first vehicle and the second vehicle. A response of the first vehicle to the final number of control commands is a desired response.
Owner:THE BOEING CO

System, a method and a computer program product for maneuvering of an air vehicle with tiltable propulsion unit

A control system configured to control a deceleration process of an air vehicle which comprises at least one tiltable propulsion unit, each of the at least one tiltable propulsion units is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle.
Owner:ISRAEL AEROSPACE IND

Automatic formation flight control system

InactiveUS20050230563A1Discrete and precise and positive controlQuick shareActuated automaticallyWingsTelecommunications linkTransceiver
An integrated system for automatic formation flight control of multiple vehicles such as aircraft, helicopters, or space platforms. The system is used to control multiple aircraft in a pre-determined flight formation and provide positive identification, control and discrete communications between any number of aircraft in order to prevent mid-air collisions between aircraft in formation flight. The system includes a processor located on the aircraft to enable communications, position computations and control messaging between any number of aircraft in formation flight, a communications transceiver located on the aircraft that provides discrete communication links to any number of aircraft or aircraft in formation flight, an autopilot, an autothrottle and a display. On aircraft, the system will display the current formation and aircraft relative positions under control by the system. The system may also be used to circumvent control of a hijacked aircraft through control system intervention provided through this invention.
Owner:CORCORAN JAMES J III

Remote robot control method using three-dimensional pointing procedure and robot control system using the remote robot control method

A remote robot control method using a three-dimensional pointing procedure and a robot control system using the remote robot control method. The robot control system controls a robot in response to a user's gesture or sign without modifying the structure of the robot. The remote robot control method includes measuring a distance between a remote controller and a robot, calculating an initial position of the remote controller in an inertial navigation frame of the remote controller, calculating an initial position of the robot in the navigation frame of the remote controller, calculating an origin of the inertial navigation frame of the remote controller shown in an inertial navigation frame of the robot, calculating a new position of the remote controller in the inertial navigation frame of the remote controller, and calculating a new position of the robot in the navigation frame of the robot.
Owner:SAMSUNG ELECTRONICS CO LTD

Unattended Delivery Drop Box

A drop box apparatus is provided including a defined cavity capable of storing packages. A drop-off opening is disposed and arranged to receive at least one package from an unmanned aerial vehicle, and a pick-up opening is disposed and arranged to provide access to the package by a recipient. At least one path connects the defined space, drop-off opening, and the pick-up opening.
Owner:VAN DIKE JESSE

Device and method for composition based on small quad-rotor unmanned aerial vehicle

The invention relates to a device and method for composition based on a small quad-rotor unmanned aerial vehicle and belongs to the technical field of mobile robot positioning and navigation. The small quad-rotor unmanned aerial vehicle can rapidly enter a complex environment which a mobile robot cannot enter, carried laser radar is utilized to construct a two-dimensional map in real time according to an SLAM method, self localization and navigation of the unmanned aerial vehicle can be achieved by combining an IMU device and the like, and efficient exploration of a true complex area is achieved; the height of the small quad-rotor unmanned aerial vehicle can be conveniently adjusted to obtain two-dimensional maps on horizontal planes of different heights; the small quad-rotor unmanned aerial vehicle is rapid in movement speed and more flexible, movement and mapping of the small quad-rotor unmanned aerial vehicle are not subject to disturbance of obstacles on the ground, the range limitation of a detecting robot is broken through, the small quad-rotor unmanned aerial vehicle is extremely high in practical value, and accurate and rapid map construction can be achieved; compared with robot environment composition, the rotor wing robot can perform environment scouting more rapidly and more flexibly, and three-dimensional spatial images can be obtained.
Owner:NORTHEASTERN UNIV

Collaborative interaction method for unmanned plane cluster and visual navigation system of unmanned plane

The invention discloses a collaborative interaction method for an unmanned plane cluster and a visual navigation system of an unmanned plane. The collaborative interaction method for the unmanned plane cluster comprises the following steps of: determining unmanned planes satisfying a collaborative condition in a communication coverage area of a certain unmanned plane by the unmanned plane in the unmanned plane cluster, and establishing an unmanned plane collaboration group according to the unmanned planes satisfying the collaborative condition; determining inter-plane routes of multiple unmanned planes in the unmanned plane collaboration group; allocating collaborative tasks to multiple unmanned planes in the unmanned plane collaboration group according to link state information of the inter-plane routes; and evaluating the link state according to the motion state of multiple unmanned planes in the unmanned plane collaboration group, and updating unmanned planes in the unmanned plane collaboration group and the collaborative task of each unmanned plane according to an evaluation result. The collaborative interaction method for the unmanned plane cluster is good in real-time, strong in reliability and high in communication quality, and can better adapt to an unmanned plane cluster communication environment during visual navigation.
Owner:TSINGHUA UNIV

Multiple no-manned plane three-dimensional formation reconfiguration method based on particle swarm optimization and genetic algorithm

InactiveCN101286071ASolving the Optimal Time Control ProblemSolving optimization problems with centralized controlGenetic modelsPosition/course control in three dimensionsLinear controlPiecewise linearization
The invention discloses a three-dimensional formation reconfiguration method for multiple unmanned aerial vehicles based on particle swarm optimization and genetic algorithm. The method considers the position of the unmanned aerial vehicle in the ground coordinates and the speed, track angle and course angle of the unmanned aerial vehicle when establishing a formation model, carries out subsection linear disposal of the control input of each flying unit in the unmanned aerial vehicle, replaces the approximate subsection linear control input with the continuous control input, then carries out global search by the genetic algorithm, subsequently carries out partial searching by the particle swarm optimization algorithm, on the base thereof, the particle swarm optimization is used to guide the genetic algorithm to search a global optimum solution so as to figure out the subsection linear control input. Compared with the traditional method, the method provided by the invention has good real-time performance and rapidity and can be used for solving the formation reconfiguration problem of multiple space robots under complex and dynamic environment.
Owner:BEIHANG UNIV

Drone control method and device, ground control system and drone

The invention discloses a drone control method comprising the steps that the current position and attitude of a drone are acquired; whether the drone enters a restricted area or a no-fly area is judged according to the current position and attitude of the drone; and when the drone enters the restricted area or the no-fly area, flight of the drone is controlled according to a flight control strategy corresponding to the area. The invention also discloses drone control device, the drone with the control device and a ground control system. The drone is enabled to automatically avoid the no-fly area so that flight efficiency and flight safety can be enhanced.
Owner:SICHUAN AEE AVIATION TECH CO LTD

Autonomous Carrier for Continuously Moving Wing Assembly Line

A method and apparatus for moving a structure. The structure is supported on a carrier. The carrier comprises a platform having a first side and a second side, a movement system associated with the first side and configured to move the platform on a surface, a support system associated with the second side of the platform and configured to support the structure on the platform, and a leveling system configured to substantially maintain the structure in a desired orientation during movement of the platform on the surface. The carrier is moved with the structure over the surface. At least one of the movement system and the support system is adjusted to substantially maintain the structure in the desired orientation.
Owner:THE BOEING CO

Small-sized depopulated helicopter independent flight control system

ActiveCN101192064ARealize fully autonomous flight capabilityImprove reliabilityAttitude controlTotal factory controlControl signalOn board
The invention relates to a miniature unmanned helicopter auto flight control system which comprises an on-board control system, wherein, an on-board computer gets signals from sensors through a serial port, and exchanges data with a ground-based computer through on-board and ground wireless Ethernet access points; the on-board computer carries out serial communication with a digital signal processor to control a steering engine set of the unmanned helicopter; a remote control signal receiver outputs to the digital signal processor and then is connected with the on-board computer through a serial port, and an auto control signal and a ground remote control signal are accumulated to get a current steering engine control signal. And the auto flight control system also comprises a ground control system, wherein, the ground-based computer transmits flight control instructions to the on-board computer and receives and records flight data; through operating a ground helicopter remote controller, manual control instructions can be transmitted to the on-board remote control signal receiver via wireless radio frequency signals. The invention can improve the auto flight ability of the miniature unmanned helicopter, strengthen system reliability, expand the application range of the unmanned helicopter and enable the helicopter to complete given missions beyond the visual range.
Owner:SHENYANG INST OF AUTOMATION - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products