Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2513results about "Picture taking arrangements" patented technology

Airborne inventory and inspection system and apparatus

A system and apparatus for acquiring images of electric transmission line tower structures, equipment attached to said tower structures, and transmission lines suspended from said towers. The system uses a fixed wing aircraft and an arrangement of at least one still camera, means for detecting a tower structure, a data storage unit, and a central processing unit containing operational software. The central processing unit is connected to the camera, the means for detecting a tower structure, and the storage unit. The detection means is a laser altimeter or a combination of preset longitude / latitude coordinates for tower locations and a GPS unit which supplies continuous longitude / latitude coordinates for the aircraft location for comparison to those preset coordinates. The aircraft is flown along the transmission line at a predetermined altitude above the tops of said towers (60–100 feet). The still camera points rearwardly relative to the line of flight of the aircraft and take a picture from between two adjacent towers and along an exposure line directed downwardly at an angle to the line of flight, 30–60 degrees and preferably 45 degrees. The detecting means transmits a signal to the central processing indicative of the presence of a tower to be photographed. The central processing unit calculates the time delay necessary for said aircraft to fly past the tower to a predetermined exposure point located between the tower to be photographed and the next tower in said transmission line after the tower to be photographed. The still camera is activated at the exposure point to acquire an image of the tower structure. The data corresponding to the acquired image is transmitted to a data storage unit for later retrieval and examination to identify defects in the tower or the equipment or transmission lines suspended form the tower. The system is reset to continue acquiring images along the transmission lines. The system is also provided with a video capability to film the towers and transmission lines and the line right-of-way.
Owner:POWER VIEW COMPANY L L C

Unmanned aerial vehicle autonomous obstacle detection system and method based on binocular vision

InactiveCN105222760ARealize the function of effective obstacle avoidanceRealize the function of obstacle avoidanceTransmission systemsPicture taking arrangementsUncrewed vehicleObstacle avoidance
The invention relates to an unmanned aerial vehicle autonomous obstacle detection system and method based on binocular vision. The unmanned aerial vehicle autonomous obstacle detection system and method based on the binocular vision are characterized in that the system comprises a binocular visual system, other sensor modules and a flight control system which are mounted on an unmanned aerial vehicle; the method comprises the steps that the binocular visual system acquires visual information of the flight environment of the unmanned aerial vehicle, and obstacle information is obtained through processing; other sensor units acquire state information of the unmanned aerial vehicle; the flight control system receives the obstacle information and the state information of the unmanned aerial vehicle, establishes a flight path and generates a flight control instruction to send to the unmanned aerial vehicle; the unmanned aerial vehicle flies by avoiding obstacles according to the flight control instruction. According to the unmanned aerial vehicle autonomous obstacle detection system and method based on the binocular vision, the vision information is fused with other sensor information, the flight environment information is perceived, flight path control and path planning are conducted to avoid the obstacles, the problem of vision obstacle avoidance of the unmanned aerial vehicle is effectively solved, and the capacity of completing vision obstacle avoidance by means of a vehicle-mounted camera is achieved.
Owner:一飞智控(天津)科技有限公司

Method for calculation and regulation of integral time of star-loading TDICCD camera

The invention relates to a space borne TDICCD camera integral timing and adjusting method, which comprises the following steps: (1) the orbit is simulated with high precision in which positions parameters of photographed spots of the satellite under drift angle control or at different swinging angles are outputted such as vector coordinates and oblique distances of the photographed spots as well as vector simulation data for the satellite position; (2) the vector simulation data for the satellite position are analyzed to come out with the shift speeds of the photographed spots; (3) eliminate the radial-directional speeds from the shift speeds of the photographed spots to become the image motion speeds; (4) utilize the image motion speeds and the oblique distances of the photographed spots to obtain the integral times. The invention also provides a design method for TDICCD related parameters as well as a real-time adjusting method for integral times on the satellite under control of ground commands. The space borne TDICCD camera integral timing and adjusting method realizes an organic combination of simulation modeling with high precision and positional vector differential method, which eliminates errors introduced into the deduction process in traditional geometric analysis and calculation and controls error delivery to improve calculation precision; the arrival real-time adjusting method for integral times on the satellite ensures a reliable integral synchronous control.
Owner:AEROSPACE DONGFANGHONG SATELLITE

First-person immersive unmanned aerial vehicle driving system realized by virtue of virtual reality and binocular vision technology and driving method

InactiveCN105222761ARealize Virtual MigrationTrack syncSimulator controlPicture taking arrangementsUncrewed vehicleEyewear
A first-person immersive unmanned aerial vehicle driving system realized by virtue of virtual reality and a binocular vision technology and a driving method belong to the technical field of unmanned aerial vehicles and aim at solving the problems that a real-time flying state cannot be mastered through an existing unmanned aerial vehicle driving system, and errors are liable to occur. The driving system and the driving method are characterized in that an unmanned aerial vehicle body carries a binocular camera through an existing tri-axial cradle head stabilizer, an unmanned aerial vehicle image transmission module is equipped for image back transmission, and the tri-axial cradle head stabilizer and the actions of a driver on the ground are synchronized by virtue of a data transmission module and a pair of virtual reality goggles; the driver of the unmanned aerial vehicle on the ground wears the virtual reality goggles and sits in a simulating cabin approximate to a real helicopter driving cabin to feel pictures took by the binocular camera and aircraft flying information, and the flying of the unmanned aerial vehicle is controlled by adopting the data transmission module. The driving system and the driving method are suitable for manipulation of the unmanned aerial vehicle.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products