Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

27903results about "Position fixation" patented technology

Integrated routing/mapping information

An Integrated Routing/Mapping Information System (IRMIS) links desktop personal computer cartographic applications to one or more handheld organizer, personal digital assistant (PDA) or "palmtop" devices. Such devices may be optionally equipped with, or connected to, portable Global Positioning System (GPS) or equivalent position sensing device. Desktop application facilitates user selection of areas, starts, stops, destinations, maps and/or point and/or route information. It optionally includes supplemental online information, preferably for transfer to the PDA or equivalent device. Users' options include route information, area, and route maps. Maps and related route information are configured with differential detail and levels of magnitude. Used in the field, in conjunction with GPS receiver, the PDA device is configured to display directions, text and map formats, the user's current position, heading, speed, elevation, and so forth. Audible signals identifying the next turn along the user's planned route are also provided. The user can pan across maps and zoom between two or more map scales, levels of detail, or magnitudes. The IRMIS also provides for "automatic zooming," e.g., to show greater detail or closer detail as the user approaches a destination, or to larger scale and lower resolution to show the user's overall planned route between points of interest. The IRMIS also enables the user to mark or record specific locations and/or log actual travel routes, using GPS position information. These annotated location marks and/or "breadcrumb" or GPS log data can be saved, uploaded, displayed, or otherwise processed on the user's desktop geographic information or cartographic system. The IRMIS application and data may be distributed online and/or in tangible media in limited and advanced manipulation formats.
Owner:GARMIN

Wireless location using multiple location estimators

InactiveUS6249252B1Effectively and straightforwardly resolvedAmbiguity and conflictDirection finders using radio wavesBeacon systems using radio wavesTerrainHeuristic
A location system is disclosed for commercial wireless telecommunication infrastructures. The system is an end-to-end solution having one or more location centers for outputting requested locations of commercially available handsets or mobile stations (MS) based on, e.g., CDMA, AMPS, NAMPS or TDMA communication standards, for processing both local MS location requests and more global MS location requests via, e.g., Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: (1) two-way TOA and TDOA; (2) pattern recognition; (3) distributed antenna provisioning; (5) GPS signals, (6) angle of arrival, (7) super resolution enhancements, and (8) supplemental information from various types of very low cost non-infrastructure base stations for communicating via a typical commercial wireless base station infrastructure or a public telephone switching network. Accordingly, the traditional MS location difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with strategies for: (a) automatically adapting and calibrating system performance according to environmental and geographical changes; (b) automatically capturing location signal data for continual enhancement of a self-maintaining historical data base retaining predictive location signal data; (c) evaluating MS locations according to both heuristics and constraints related to, e.g., terrain, MS velocity and MS path extrapolation from tracking and (d) adjusting likely MS locations adaptively and statistically so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signing environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:TRACBEAM

Applications for a wireless location gateway

A location system is disclosed for commercial wireless telecommunication infrastructures. The system is an end-to-end solution having one or more location centers for outputting requested locations of commercially available handsets or mobile stations (MS) based on, e.g., CDMA, AMPS, NAMPS or TDMA communication standards, for processing both local MS location requests and more global MS location requests via, e.g., Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: (1) two-way TOA and TDOA; (2) pattern recognition; (3) distributed antenna provisioning; (5) GPS signals, (6) angle of arrival, (7) super resolution enhancements, and (8) supplemental information from various types of very low cost non-infrastructure base stations for communicating via a typical commercial wireless base station infrastructure or a public telephone switching network. Accordingly, the traditional MS location difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with strategies for: (a) automatically adapting and calibrating system performance according to environmental and geographical changes; (b) automatically capturing location signal data for continual enhancement of a self-maintaining historical data base retaining predictive location signal data; (c) evaluating MS locations according to both heuristics and constraints related to, e.g., terrain, MS velocity and MS path extrapolation from tracking and (d) adjusting likely MS locations adaptively and statistically so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signaling environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:DUPRAY DENNIS J

Geographic-based communication service system with more precise determination of a user's known geographic location

A geographic based communications service system that includes a network and a plurality of access points connected to the network and arranged at known locations in a geographic region. One or more service providers or information providers may be connected to the network to provide services or information on the network. Content provided by the service providers may be based on the known geographic location of the user of a portable computing device (PCD). The known geographic location may be determined with a high degree of precision, using one or more access points and one of several different techniques. In one embodiment, the geographic location of the PCD may be determined within a radius of ten feet. Access points may be configured to determine the bearing of a signal received from a PCD, as well as the strength of the signal transmitted by the PCD. Access points may also be configured to send and receive signals with time stamps. These time stamps may be used to calculate signal travel time, thereby allowing a determination of the distance between an access point and a PCD. Each access point may include location circuitry. The location circuitry may include both analog and digital circuitry configured to perform the various methods used to determine the precise geographic location.
Owner:META PLATFORMS INC

Wireless location using signal fingerprinting

A location system is disclosed for commercial wireless telecommunication infrastructures. The system is an end-to-end solution having one or more location centers for outputting requested locations of commercially available handsets or mobile stations (MS) based on, e.g., CDMA, AMPS, NAMPS or TDMA communication standards, for processing both local MS location requests and more global MS location requests via, e.g., Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: (1) two-way TOA and TDOA; (2) pattern recognition; (3) distributed antenna provisioning; and (4) supplemental information from various types of very low cost non-infrastructure base stations for communicating via a typical commercial wireless base station infrastructure or a public telephone switching network. Accordingly, the traditional MS location difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with strategies for: (a) automatically adapting and calibrating system performance according to environmental and geographical changes; (b) automatically capturing location signal data for continual enhancement of a self-maintaining historical data base retaining predictive location signal data; (c) evaluating MS locations according to both heuristics and constraints related to, e.g., terrain, MS velocity and MS path extrapolation from tracking and (d) adjusting likely MS locations adaptively and statistically so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signaling environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:TRACBEAM

Automated traffic mapping

A system of mobile units are installed in multiple vehicles in traffic. These mobile units include both wireless communications devices and apparatus that determines the location of each vehicle. Monitoring a vehicle's position as a function of time also reveals the velocity of the vehicle. Position and speed information is periodically broadcast by the vehicles to a central monitoring station and to neighboring vehicles. At the central monitoring station, the collective input of a set of vehicles is processed to provide an instant chart of traffic conditions in the area. Warnings of delays or updates on traffic conditions on the road ahead are then automatically returned to subscribers of the information or are used as part of an Intelligent Vehicle Highway System (IVHS). Neighboring vehicles within a region communicating with one another form a network in which the broadcast information is processed locally on the respective vehicles to estimate possible problems ahead and consider computing an alternate road and/or checking with the central monitoring station for more information. If out of range of the central monitoring station, the vehicles in the network form a local area network for the exchange and update of information, and when any vehicle in the network is within range of the central monitoring station, the local area network data is uploaded to help update the overall traffic information.
Owner:TOMTOM GLOBAL CONTENT

Vehicle data recorder

A self-contained device for capturing video imagery in response to a triggering event may include a mirror and be mounted to a vehicle windshield in place of a conventional rear-view mirror. The device includes a housing in which the electronics and related elements of the invention are contained. These elements include one or more data sensors, at least one of which is an image sensor,. Also included are a data sensor circuit and a capture circuit. The data sensor circuit responds to the triggering event, and may include data sensors coupled to vehicle systems such as a speedometer, tachometer, brake, turn signals or the like, or other data sensors such as an accelerometer or a vehicle position sensor. The triggering event may be, for example, a sudden change in acceleration indicative of an impending collision, or it may be a change in the signal provided by any such data sensor, including the image sensor. The capture circuit is coupled to the image sensor and captures a signal representing the video imagery by recording it in a digital memory, by transmitting it to a remote location, or by other suitable means. The capture circuit terminates capture of the signal in response to the data sensor circuit sensing a triggering event. The captured data thus describe circumstances leading up to the time of the triggering event. The data can be analyzed to help police, insurance or other investigative personnel understand those circumstances.
Owner:DRIVECAM

Method and apparatus for scheduling presentation of digital content on a personal communication device

A method and apparatus wherein a software scheduling agent resides on a communication network and/or client device, such as location-aware wireless communication appliances, television set top boxes, or other end user client devices is disclosed. The software scheduling agent is part of a probabilistic modeling system in which the scheduler operates to perform constrained random variation with selection. Digital content is generated, organized, and stored on the communication network and/or the client devices. An electronic digital content wrapper, which holds information in the form of data and metadata related to the digital content is associated with each item of digital content. Contextual profiles for each user and each item of digital content are established by the users and the network and maintained by a service provider on the communication network. The software scheduling agent compares the contextual digital content profile for each item of digital content to the contextual user profile for each user to determine which digital content should be offered for presentation to each user. The comparison and determination of which items of digital content should be offered for presentation to which users is performed by a process of constrained random variation. After the software scheduling agent determines which items of digital content would most likely be relevant or interesting to the user, the digital content is transmitted, either in whole or in part, at predetermined times over the communication network to the appropriate client devices. The digital content is then stored, either in whole or in part, in cache memory on the client device until an appropriate time when the digital content is digitally packaged and presented to particular users over those user's client devices.
Owner:WIRELESS AGENTS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products