Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2083 results about "Gps data" patented technology

Automatic steering system and method

An automatic steering system and method are provided for a vehicle including an hydraulic primary steering system. The automatic steering system includes a guidance module with a GPS receiver and a microprocessor adapted to process and store GPS data defining travel paths, which can be associated with a cultivated field in an agricultural vehicle application. An automatic steering module is connected to the guidance module and to a steering valve control block, which provides pressurized hydraulic fluid in parallel with the vehicle's primary hydrostatic steering system. The automatic steering system utilizes a constant factor, such as steering rate, for predictability and simplicity in the operation of the automatic steering system. A feedback loop from the vehicle hydrostatic steering system uses the vehicle's actual turning rate for comparison with a desired turning rate. The system is adapted for original equipment installation and retrofitting on vehicles, such as farm tractors, with various primary hydrostatic steering system configurations. An automatic steering method includes the steps of: initializing the system; adjusting the steering with an hydraulic valve to provide a constant steering rate; providing feedback corresponding to the vehicle's actual turning rate and combining the feedback with other input signals to provide automatic steering.
Owner:AGJUNCTION

Self-charging power controlled system for locating animals by GPS

A portable tracking unit attached to a movable object, such as an animal's collar, includes a GPS receiver to receive GPS signals from multiple satellites for use in multilateration calculations in determining the current position of the tracking unit. A processor in the tracking unit processes the GPS data signals to determine the tracking unit's position, and a GSM mobile wireless transmitter is used to transmit the geographic coordinates of the tracking unit to a remote monitoring unit. The tracking unit also includes a motion detector that outputs a motion signal when the animal is on the move. A motion signal “wakes up” the processor that wakes up the GPS receiver and the GSM transmitter to begin calculating and transmitting the geographic coordinates of the tracking unit. The tracking unit also includes electrical generators configured to transduce mechanical motion of the tracking unit into electrical energy to recharge a battery and power devices. The portable tracking unit is fabricated monolithically in silicon with circuitry integrated with silicon micro-machined motion sensor, as well as power generators, and packaged through silicon wafer bonding. A remote computing device receives the geographic coordinates of the tracking device and indicates to a user the position of the tracking device in relation to a map. An alert may also be provided if the location of the tracking device is outside a programmed safe zone.
Owner:CARBON GLOBAL

Airborne Situational Awareness System

A digital airborne situational awareness system and method. The system is installed on multiple aircraft to generate an airborne network providing collision avoidance without ground control. A global positioning system (GPS) receiver unit is coupled to a microprocessor in each aircraft equipped with the system. A software engine receives the raw GPS data and determines location, speed, flight path direction, and altitude. The software engine conditions the GPS data for display on a cockpit display panel. The conditioned data orients the display with the heading, speed, and altitude data of the host system aircraft. A transceiver section provides data transmission to other airborne receiving units within the approximately forty mile range of the airborne network. The transceiver transmits data packets including reconditioned location (track), altitude, and an aircraft class identifier to other aircraft in the network. The transceiver receives data from other airborne vehicles equipped with the system within the network range. Once the computations of positional data for other aircraft are performed, the positional data is sent to the display processing section for appropriate cockpit display. The software engine develops a set of projections that are compared to the relative speed, flight path direction and altitude of the all other units in the airborne network. These projections determine the threat levels of converging flight paths with limits that provide warning data to the pilot of any pending flight path conflict situation.
Owner:DIMENSIONAL RES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products