Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

39806results about "Radio wave reradiation/reflection" patented technology

Method and apparatus for annotating media streams

In one embodiment, the invention is a method and apparatus for annotating media streams. One embodiment of a method for facilitating creation of an annotated media stream by a user includes receiving the media stream from the user, mapping at least one item of supplemental content to at least a portion of the media stream to produce the annotated media stream, and storing the annotated media stream. In another embodiment, a method for distributing an annotated media stream provided by a user includes receiving the annotated media stream from the user, where the annotated media stream includes at least one item of supplemental content mapped to at least a portion of a media stream to produce the annotated media stream, storing the annotated media stream, receiving a request from a viewer to view the annotated media stream, and distributing the annotated media stream to the viewer. In another embodiment, a method for distributing an annotated media stream provided by a user includes distributing the annotated media stream to a viewer, where the annotated media stream includes at least one item of supplemental content mapped to at least a portion of a media stream to produce the annotated media stream, and collecting a commission when the annotated media stream is viewed by the viewer. In one embodiment, the collecting requires further action on a part of the viewer (such as selection of a hyperlink contained in the at least one item of supplemental content or consummation of a commercial transaction).
Owner:TOUT

Geographic-based communication service system with more precise determination of a user's known geographic location

A geographic based communications service system that includes a network and a plurality of access points connected to the network and arranged at known locations in a geographic region. One or more service providers or information providers may be connected to the network to provide services or information on the network. Content provided by the service providers may be based on the known geographic location of the user of a portable computing device (PCD). The known geographic location may be determined with a high degree of precision, using one or more access points and one of several different techniques. In one embodiment, the geographic location of the PCD may be determined within a radius of ten feet. Access points may be configured to determine the bearing of a signal received from a PCD, as well as the strength of the signal transmitted by the PCD. Access points may also be configured to send and receive signals with time stamps. These time stamps may be used to calculate signal travel time, thereby allowing a determination of the distance between an access point and a PCD. Each access point may include location circuitry. The location circuitry may include both analog and digital circuitry configured to perform the various methods used to determine the precise geographic location.
Owner:META PLATFORMS INC

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

RFID applications

Applications of RFID technology include: RFID Tags on Automobiles in Parking Garages; RFID w/Toothbrushes; RFID Tags For Laundry Settings; RFID Tags Or Labels to Find a Mate; RFID To Identify The Value Of Coins; RFID Tags In The Doctors Office; RFID Tags Or Labels In Game Arcades; RFID With Prisoners; RFID Tags To Identify Soldiers; RFID Labels As Tags To Label Particular Components Of Aircraft or Other Structures; Car, Snowmobile, Boat, Etc. Ignition That Won't Start Without RFID Card; Car seats with RFID reader and memory; Air bags that adjust based on information on RFID; Car that keeps track of GPS info and knows whos driving based on RFID; RFID Smart Closet; Method of taking attendance; RFID on networked desks to monitor the location of individuals; Personal computer reads RFID to log you in and take you to favorite web page, load favorites list, etc.; RFID labels on Files; RFID address label versions of all label and sheet inventions; RFID sports tickets; Combination function invitation and RFID chip to allow admittance; Roll of tape with RFID built in; Schoolbus reads which kids getting on, keeps record; RFID on each car wheel; RFID key to operate common-area laundry; RFID to automatically adjust weights/treadmill settings in gym; RFID w/clothes measurements, save shelf space at store, get proper size; RFID keyring w/car information; Keep track of who's driving around neighborhood; RFID dental implant; RFID Thumbtack; RFID Doorstop; RFID identification of boats or ships at docks; RFID on cups w/specifics of favorite coffee drinks; RFID on bridges with RFID tanks on top of cars, to detect speeding; RFID on studs in a wall and RFID reader that acts as a stud finder; RFID tags or labels inside tires; RFID cards supplied with newspapers or magazines; RFID card that lights up a when the user reaches a particular location; RFID sports ticket w/automatic map generation to seat; RFID card to tell school cafeteria what lunch to prepare for particular student; student desk with slot to receive RFID card, desks on networks together, Central computing system can tell where any particular student is sitting at any given moment within the school; RFID readers on outdoor play equipment; Authentication of Expensive Items With RFID; Paintings or other art work with RFID label to be used to verify the number in a limited series; RFID on sports helmet or uniform; RFID chips in paint; RFID cards issued to airline passengers to identify type of drinks and meals for a particular passenger, etc.; Greeting Cards With RFID; Decorative Tiles With RFID Tags; RFID in Car Washes; and Adaptive Advertising Based on RFID Information.
Owner:HANSEN SCOTT ROBERT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products