Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

612 results about "Sensor fusion" patented technology

Sensor fusion is combining of sensory data or data derived from disparate sources such that the resulting information has less uncertainty than would be possible when these sources were used individually. The term uncertainty reduction in this case can mean more accurate, more complete, or more dependable, or refer to the result of an emerging view, such as stereoscopic vision (calculation of depth information by combining two-dimensional images from two cameras at slightly different viewpoints).

Automatic driving system based on enhanced learning and multi-sensor fusion

The invention discloses an automatic driving system based on enhanced learning and multi-sensor fusion. The system comprises a perception system, a control system and an execution system. The perception system high-efficiently processes a laser radar, a camera and a GPS navigator through a deep learning network so as to realize real time identification and understanding of vehicles, pedestrians, lane lines, traffic signs and signal lamps surrounding a running vehicle. Through an enhanced learning technology, the laser radar and a panorama image are matched and fused so as to form a real-time three-dimensional streetscape map and determination of a driving area. The GPS navigator is combined to realize real-time navigation. The control system adopts an enhanced learning network to process information collected by the perception system, and the people, vehicles and objects of the surrounding vehicles are predicted. According to vehicle body state data, the records of driver actions are paired, a current optimal action selection is made, and the execution system is used to complete execution motion. In the invention, laser radar data and a video are fused, and driving area identification and destination path optimal programming are performed.
Owner:清华大学苏州汽车研究院(吴江)

Multi-sensor fusion-based autonomous obstacle avoidance unmanned aerial vehicle system and control method

The invention discloses a multi-sensor fusion-based autonomous obstacle avoidance unmanned aerial vehicle system and a control method. The system includes an environment information real-time detection module which carries out real-time detection on surrounding environment through adopting a multi-sensor fusion technology and transmits detected information to an obstacle data analysis processing module, the obstacle data analysis processing module which carries out environment structure sensing construction on the received information of the surrounding environment so as to determine an obstacle, and an obstacle avoidance decision-making module which determines an obstacle avoidance decision according to the output result of the obstacle data analysis processing module, so as to achieve obstacle avoidance of an unmanned aerial vehicle through the driving of power modules which is performed by a flight control system. According to the multi-sensor fusion-based autonomous obstacle avoidance unmanned aerial vehicle system and the control method of the invention, binocular machine vision systems are arranged around the body of the unmanned aerial vehicle, so that 3D space reconstruction can be realized; and an ultrasonic device and a millimeter wave radar in an advancing direction are used in cooperation, so that an obstacle avoidance method is more comprehensive. The system has the advantages of high real-time performance of obstacle detection, long visual detection distance and high resolution.
Owner:STATE GRID INTELLIGENCE TECH CO LTD

Method and system for in-store shopper behavior analysis with multi-modal sensor fusion

The present invention provides a comprehensive method for automatically and unobtrusively analyzing the in-store behavior of people visiting a physical space using a multi-modal fusion based on multiple types of sensors. The types of sensors employed may include cameras for capturing a plurality of images and mobile signal sensors for capturing a plurality of Wi-Fi signals. The present invention integrates the plurality of input sensor measurements to reliably and persistently track the people's physical attributes and detect the people's interactions with retail elements. The physical and contextual attributes collected from the processed shopper tracks includes the motion dynamics changes triggered by an implicit and explicit interaction to a retail element, comprising the behavior information for the trip of the people. The present invention integrates point-of-sale transaction data with the shopper behavior by finding and associating the transaction data that corresponds to a shopper trajectory and fusing them to generate a complete an intermediate representation of a shopper trip data, called a TripVector. The shopper behavior analyses are carried out based on the extracted TripVector. The analyzed behavior information for the shopper trips yields exemplary behavior analysis comprising map generation as visualization of the behavior, quantitative shopper metric derivation in multiple scales (e.g., store-wide and category-level) including path-to-purchase shopper metrics (e.g., traffic distribution, shopping action distribution, buying action distribution, conversion funnel), category dynamics (e.g., dominant path, category correlation, category sequence). The present invention includes a set of derived methods for different sensor configurations.
Owner:VIDEOMINING CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products