Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42943results about "Vehicles" patented technology

Control and systems for autonomously driven vehicles

A navigation and control system including one or more position sensors configured to generate position signals indicative of the location and heading of a vehicle. The system includes one or more operation control mechanisms having inputs and producing outputs which control an operation of the vehicle and includes a self-contained autonomous controller disposed remote from the operation control mechanisms. The autonomous controller includes a processor configured to receive the position signals from the position sensors and to generate operation control signals defining an updated travel path for the vehicle, and a programmable interface providing communication among the position sensors, the operation control mechanisms, and the processor. The programmable interface is configured to normalize inputs to the processor from the position sensors and to generate compatible operation control signals applied as the inputs to the operation control mechanisms, whereby the self-contained autonomous controller is configurable for operation with a variety of different sensors and different operation control mechanisms.
Owner:SAMSUNG ELECTRONICS CO LTD

Vehicle computer system with transparent display

The invention relates to a vehicle computer system. The vehicle computer system gathers data from a safety sensor to determine whether the proper safety conditions are present for the vehicle operator to interact with the vehicle computer system. A safety controller receives safety condition data gathered from the safety sensor and instructs the display manager to disable the display of information to the vehicle operator during unsafe operating conditions. The vehicle computer system advantageously employs a transparent display screen to provide greater field of vision of the vehicle operator than could be provided by a traditional display screen.
Owner:HAND HELD PRODS

Companion robot for personal interaction

A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and / or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
Owner:IROBOT CORP

Method and system for controlling a remote vehicle

A system for controlling more than one remote vehicle. The system comprises an operator control unit allowing an operator to receive information from the remote vehicles and send commands to the remote vehicles via a touch-screen interface, the remote vehicles being capable of performing autonomous behaviors using information received from at least one sensor on each remote vehicle. The operator control unit sends commands to the remote vehicles to perform autonomous behaviors in a cooperative effort, such that high-level mission commands entered by the operator cause the remote vehicles to perform more than one autonomous behavior sequentially or concurrently. The system may perform a method for generating obstacle detection information from image data received from one of a time-of-flight sensor and a stereo vision camera sensor.
Owner:IROBOT CORP

Method and system for detecting objects external to a vehicle

Method and system for obtaining information about objects in the environment outside of and around a vehicle and preventing collisions involving the vehicle includes directing a laser beam from the vehicle into the environment, receiving from an object in the path of the laser beam a reflection of the laser beam at a location on the vehicle, and analyzing the received laser beam reflections to obtain information about the object from which the laser beam is being reflected. Analysis of the laser beam reflections preferably entails range gating the received laser beam reflections to limit analysis of the received laser beam reflections to only those received from an object within a defined (distance) range such that objects at distances within the range are isolated from surrounding objects.
Owner:AMERICAN VEHICULAR SCI

Method and arrangement for mapping a road

Arrangement and method for mapping a road during travel of a vehicle having two data acquisition modules arranged on sides of the vehicle, each including a GPS receiver and antenna for enabling the vehicle's position to be determined and a linear camera which provides one-dimensional images of an area on the respective side in a vertical plane perpendicular to the road such that information about the road is obtained from a view in a direction perpendicular to the road. A processor unit forms a map database of the road by correlating the vehicle's position and the information about the road. Instead of or in addition to the linear cameras, scanning laser radars are provided and transmit waves downward in a plane perpendicular to the road and receive reflected waves to provide information about distance between the laser radars and the ground for use in forming the database.
Owner:AMERICAN VEHICULAR SCI

System and Method for Performing Inventory Using a Mobile Inventory Robot

A mobile inventory robot system generates an inventory map of a store and a product database when a mobile inventory robot is manually navigated through the store to identify items on shelves, a location for each of the items on the shelves, and a barcode for each of the items. The system performs inventory of the items by navigating through the store via the inventory map, capturing a shelf image, decoding a product barcode from the captured shelf image, retrieving a product image for the decoded product barcode from the product database, segmenting the captured shelf image to detect an image of an item on the shelves, determining whether the detected image matches the retrieved image and, if not, setting an out-of-stock flag for an the item.
Owner:IBM CORP

Navigation and control system for autonomous vehicles

A navigation and control system including a sensor configured to locate objects in a predetermined field of view from a vehicle. The sensor has an emitter configured to repeatedly scan a beam into a two-dimensional sector of a plane defined with respect to a first predetermined axis of the vehicle, and a detector configured to detect a reflection of the emitted beam from one of the objects. The sensor includes a panning mechanism configured to pan the plane in which the beam is scanned about a second predetermined axis to produce a three dimensional field of view. The navigation and control system includes a processor configured to determine the existence and location of the objects in the three dimensional field of view based on a position of the vehicle and a time between an emittance of the beam and a reception of the reflection of the emitted beam from one of the objects.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and system for remote control of mobile robot

A system for tele-operating a robot in an environment includes a user interface for controlling the tele-operation of the robot, an imaging device associated with the robot for providing image information representative of the environment around the robot, means for transmitting the image information to the user interface, means for converting the image information to a user-perceptible image at the user interface, means for designating one or more waypoints located anywhere in the user-perceptible image towards which the robot will move, the waypoint in the user-perceptible image towards which the robot will first move being designated as the active waypoint using an icon, means for automatically converting the location of the active waypoint in the user-perceptible image into a target location having x, y, and z coordinates in the environment of the robot, means for providing real-time instructions to the robot from the user interface to move the robot from the robot's current location in the environment to the x, y, and z coordinates of the target location in the environment, and means for moving the icon representing the active waypoint in the user-perceptible image to a new location in the user-perceptible image while the robot is executing the real-time instruction, wherein the location-converting means automatically converts the new location of the icon representing the active waypoint into a new target location having x, y, and z coordinates in the environment of the robot towards which the robot will move.
Owner:IROBOT CORP

Mirror assembly for vehicle

An interior rearview mirror assembly for a vehicle includes a reflective element assembly portion and at least one cap portion adapted to attach to the reflective element assembly portion. The reflective element assembly portion includes a reflective element. The reflective element assembly portion comprises a first molding that encompasses at least a perimeter portion of the reflective element. The first molding is formed by molding a first resinous material having a tool shrinkage factor equal to or greater than about 1 percent. The cap portion comprises at least one second molding formed by molding a second resinous material having a tool shrinkage factor of less than or equal to about 1 percent. The cap portion preferably includes internal structure for supporting at least one accessory.
Owner:MAGNA MIRRORS OF AMERICA INC

Object recognition apparatus and method

An object recognition apparatus that can recognize an object in an image acquired by an on-vehicle camera mounted on a vehicle with high efficiency and accuracy. A recognition processing is carried out in a cut off range, which is cut off from the image, and in which an object to be recognized is supposed to be present. The cut off range is obtained using support information supplied from a position detection device and / or an anti-lock brake device of the vehicle. Since the object in the image changes its position as the vehicle moves, the displacement must be estimated during the object recognition. The estimation requires camera attitude parameters of the on-vehicle camera with respect to the road, and the estimation is performed using support information supplied from the position detection device and / of the anti-lock brake device. This will improve the efficiency and accuracy of obtaining the camera attitude parameters.
Owner:TOYOTA JIDOSHA KK

Method and system for multi-mode coverage for an autonomous robot

A control system for a mobile robot (10) is provided to Effectively cover a given area by operating in a Plurality of modes, including an obstacle following mode (51) and a random bounce mode (49). In other embodiments, spot coverage, such as spiraling (45), or other modes are also used to increase effectiveness. In addition, a behavior based architecture is used to implement the control system, and various escape behaviors are used to ensure full coverage.
Owner:IROBOT CORP

Method and system for detecting objects external to a vehicle

Method and system for obtaining information about objects in the environment outside of and around a vehicle and preventing collisions involving the vehicle includes directing a laser beam from the vehicle into the environment, receiving from an object in the path of the laser beam a reflection of the laser beam at a location on the vehicle, and analyzing the received laser beam reflections to obtain information about the object from which the laser beam is being reflected. Analysis of the laser beam reflections preferably entails range gating the received laser beam reflections to limit analysis of the received laser beam reflections to only those received from an object within a defined (distance) range such that objects at distances within the range are isolated from surrounding objects.
Owner:AMERICAN VEHICULAR SCI

Method and system for controlling a vehicle

Apparatus for sensing a potential rollover situation involving a vehicle including an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion, vehicle control devices arranged to affect control of the vehicle and a processor coupled to the inertial reference unit and the vehicle control devices. The processor includes an algorithm arranged to receive data from the inertial reference unit and control the vehicle control devices to apply the throttle, brakes and steering to prevent the rollover, optionally in consideration of the position of the vehicle as provided by a map database or location determining system.
Owner:AMERICAN VEHICULAR SCI

Miniature robotic vehicles and methods of controlling same

A robotic vehicle capable of traveling over various terrain and traversing obstacles. In one embodiment, the vehicle includes a cylindrical body having two or more drive wheels coupled to the ends thereof. The wheels are selectively powered to propel the vehicle. The vehicle may further include a spring member which may be deflected to a first, stored position from a second, extended position. The spring member may be quickly released from the first, stored position such that it strikes the terrain with sufficient force to lift and propel the vehicle over or onto a proximate obstacle or object. Robotic vehicles of the present invention may also include one or more sensing devices operable to collect information. Electronics may further permit autonomous, semi-autonomous, and / or remote control of the vehicle. In still other embodiments, the robotic vehicle forms part of a multi-robot surveillance team. The robotic vehicles may be delivered to the desired location through the use of a deployment and communication apparatus which, in one embodiment, is a larger robotic vehicle. The deployment and communication apparatus may form part of the communication system between the robotic vehicles and a remote workstation.
Owner:MINNESOTA RGT UNIV OF A CORP OF MN +1

Mobile Robot Providing Environmental Mapping for Household Environmental Control

A mobile robot includes a processor connected to a memory and a wireless network circuit, for executing routines stored in the memory and commands generated by the routines and received via the wireless network circuit. The processor drives the mobile robot to a multiplicity of accessible two dimensional locations within a household, and commands an end effector, including at least one motorized actuator, to perform mechanical work in the household. A plurality of routines include a first routine which monitors a wireless local network and detects a presence of a network entity on the wireless local network, a second routine which receives a signal from a sensor detecting an action state of one of the network entities, the action state changeable between waiting and active, and a third routine which commands the end effector to change state of performing mechanical work based on the presence and on the action state.
Owner:IROBOT CORP

Navigational control system for a robotic device

A navigational control system for altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area in a known spaced-apart relationship, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system; and wherein the receiving subsystem is configured and operative to process the one or more detected directed beams under the control of the navigational control algorithm to determine whether the predetermined triggering event has occurred, and, if the predetermined triggering event has occurred transmit a control signal to the robotic device, wherein reception of the control signal by the robotic device causes the robotic device to implement a prescribed conduct that alters the movement activity of the robotic device.
Owner:IROBOT CORP

Mobile robot with wireless location sensing apparatus

A robotic navigation system for computerized mobile robot. Typically the robot, which may be in an unknown location, will have an onboard internet web server, a capability of establishing a first connection to a remote web browser on the internet for robotic control purposes, and a capability of establishing a second short range bi-directional digital radio connection to one or more nearby computerized digital radio equipped devices external to the robot. Typically at least some of these nearby digital radio equipped devices will have a known location. The robot can exchange short-range bidirectional digital radio signals with nearby devices that have a known location, and obtain location data to determine it's position. This location information can be used to assist in robotic navigation. The robot can also navigate to other objects, which also may have an unknown location, using a similar technique in which the object with an unknown location exchanges short range bidirectional digital radio signals with either the robot itself, or other digital radio linked devices with a known location (which then relay the object's location to the robot).
Owner:ZWEIG STEPHEN ELIOT

Robot obstacle detection system

A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem having a defined relationship with respect to the housing and aimed at the surface for detecting the surface. The sensor subsystem includes an optical emitter which emits a directed beam having a defined field of emission and a photon detector having a defined field of view which intersects the field of emission of the emitter at a region. A circuit in communication with a detector redirects the robot when the surface does not occupy the region to avoid obstacles. A similar system is employed to detect walls.
Owner:IROBOT CORP

Accident avoidance systems and methods

Method and system for preventing accidents between first and second vehicles includes a positioning system arranged in each vehicle for determining the absolute position thereof, a memory unit arranged in the first vehicle for storing data about travel lanes, a communication system for transmitting the position of the second vehicle to the first vehicle, a receiver system arranged in the first vehicle for receiving position information from the second vehicle, a processor coupled to the positioning system, the receiver system and the memory unit in the first vehicle for predicting a collision between the vehicles based on the position of the vehicles and travel lane data, and a reactive component arranged in the first vehicle and coupled to the processor. The reactive component is arranged to initiate an action or change its operation when a collision is predicted by the processor, e.g., sound or indicate an alarm.
Owner:AMERICAN VEHICULAR SCI

Automated warehousing using robotic forklifts

A system for automated inventory management and material handling removes the requirement to operate fully automatically or all-manual using conventional vertical storage and retrieval (S&R) machines. Inventory requests to place palletized material into storage at a specified lot location or retrieve palletized material from a specified lot are resolved into missions for autonomous fork trucks, equivalent mobile platforms, or manual fork truck drivers (and their equipment) that are autonomously or manually executed to effect the request. Automated trucks plan their own movements to execute the mission over the warehouse aisles or roadways sharing this space with manually driven trucks. Automated units drive to planned speed limits, manage their loads (stability control), stop, go, and merge at intersections according human driving rules, use on-board sensors to identify static and dynamic obstacles, and human traffic, and either avoid them or stop until potential collision risk is removed.
Owner:CYBERNET SYST

Method and apparatus for body impact protection

This invention relates to active protective garments which are inconspicuously worn by an individual and which activate upon certain conditions being met. Activation causes inflation of regions of the active protective garment to provide padding and impact cushioning for the wearer. The invention is an active protective garment such as pair of shorts or pants, a jacket, a vest, underwear, and the like. The garments comprise multiple layers of material that constrain pockets or regions that are inflatable by a source of compressed gas or foam. The garments also comprise sensors to detect ballistic parameters such as acceleration, distance, relative acceleration, and rotation. The sensor information is used to determine whether activation is required. Detection and activation are accomplished in a very short time period in order to offer maximal protection for the individual wearing the garment. The system comprises a computer or logic controller that monitors the sensor data in real time and coordinates the information from all sensors. The system calculates velocity, distance, and rotational velocity. A rule-based system is used to detect a complex fall in progress and discriminate said fall in progress from the events of every day life. The pockets or inflatable regions of the garment protect the individual against falls and other impacts that may cause bone fracture or organ damage.
Owner:ACTIVE PROTECTIVE TECH

Control and systems for autonomously driven vehicles

A navigation and control system including one or more position sensors configured to generate position signals indicative of the location and heading of a vehicle. The system includes one or more operation control mechanisms having inputs and producing outputs which control an operation of the vehicle and includes a self-contained autonomous controller disposed remote from the operation control mechanisms. The autonomous controller includes a processor configured to receive the position signals from the position sensors and to generate operation control signals defining an updated travel path for the vehicle, and a programmable interface providing communication among the position sensors, the operation control mechanisms, and the processor. The programmable interface is configured to normalize inputs to the processor from the position sensors and to generate compatible operation control signals applied as the inputs to the operation control mechanisms, whereby the self-contained autonomous controller is configurable for operation with a variety of different sensors and different operation control mechanisms.
Owner:SAMSUNG ELECTRONICS CO LTD

Systems and methods for vslam optimization

The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. Certain embodiments contemplate improvements to the front-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate a novel landmark matching process. Certain of these embodiments also contemplate a novel landmark creation process. Certain embodiments contemplate improvements to the back-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate algorithms for modifying the SLAM graph in real-time to achieve a more efficient structure.
Owner:IROBOT CORP

Driverless vehicle

Each respective vehicle of a plurality of vehicles transports a vehicle navigation system. A position determining system determines a position and a velocity of the respective vehicle and an information acquisition system is operable to determine a displacement and velocity between the respective vehicle and a vehicle adjacent to the respective vehicle. An information communication system of a respective vehicle is operable to transmit first information (that vehicle's velocity and position) to other vehicles and to receive information from other vehicles regarding their velocities and positions. A vehicle routing system can determine a target routing and target velocity for moving the respective vehicle over a path including the roadway. Based on the received or determined information, the velocity of the respective vehicle can be controlled.
Owner:ARRIVER SOFTWARE AB

Suggesting a route based on desired amount of driver interaction

Aspects of the disclosure relate generally to generating and providing route options for an autonomous vehicle. For example, a user may identify a destination, and in response the vehicle's computer may provide routing options to the user. The routing options may be based on typical navigating considerations such as the total travel time, travel distance, fuel economy, etc. Each routing option may include not only an estimated total time, but also information regarding whether and which portions of the route may be maneuvered under the control of the vehicle alone (fully autonomous), a combination of the vehicle and the driver (semiautonomous), or the driver alone. The time of the longest stretch of driving associated with the autonomous mode as well as map information indicating portions of the routes associated with the type of maneuvering control may also be provided.
Owner:WAYMO LLC

Method and system for robot localization and confinement

The present invention discloses a system and method for confining a robot to a particular space. The system includes a portable barrier signal transmitter that produces a barrier signal primarily along an axis, and a mobile robot capable of avoiding the barrier signal upon detection of the barrier signal. In the preferred embodiment the barrier signal is emitted in an infrared frequency and the robot includes an omni-directional signal detector. Upon detection of the signal, the robot turns in a direction selected by a barrier avoidance algorithm until the barrier signal is no longer detected.
Owner:IROBOT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products