Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

93 results about "Movement activity" patented technology

Gross motor activities which means movement of the entire body or larger parts of the body. Examples include creeping, crawling, rolling, running, jumping, and dancing. Fine motor activities involve movement of smaller parts of the body, like hands and feet.

Navigational control system for a robotic device

A navigational control system for altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising means for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area in a known spaced-apart relationship, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system; and wherein the receiving subsystem is configured and operative to process the one or more detected directed beams under the control of the navigational control algorithm to determine whether the predetermined triggering event has occurred, and, if the predetermined triggering event has occurred transmit a control signal to the robotic device, wherein reception of the control signal by the robotic device causes the robotic device to implement a prescribed conduct that alters the movement activity of the robotic device.
Owner:IROBOT CORP

Method and apparatus for tracking position of a ball in real time

A method and apparatus for tracking objects used in connection with athletic activities or sporting events, especially, balls, pucks, and the like. The method includes the steps of differencing present and previous frames of a video image including the, for example, ball to obtain motion regions, converting the motion regions to HSV color space, extracting the region corresponding to the ball based on empirical color data about the ball, obtaining a motion vector based on the motion of the ball region from a previous frame to the current frame, and updating the ball trajectory based on the newest motion vector obtained. The method also preferably includes a step of identifying completed trajectories based on preset constraints. The method is preferably expanded on by using at least one pair of cameras to provide a three-dimensional trajectory, and sometimes preferable expanded on by using a plurality of cameras, especially a plurality of pairs of cameras. An apparatus according to the present invention includes at least one camera connected to a computer which operates to difference previous and current frames, compute the ball track, convert ball regions to HSV color space and output the tracking and video information. In a case where one or more pairs of cameras are used, the computer is preferably also provided with a stereo matching device or module for matching the tracking results from respective cameras and/or respective pairs of cameras.
Owner:ALCATEL-LUCENT USA INC +1

Method and apparatus for monitoring the flow of items through a store or warehouse

An item velocity monitoring system is provided which interfaces with a consumer retail store that has several cash registers that are tied into a “point of sale” store controller. The item velocity monitoring system is capable of detecting when sales (or other movement activities) of an item are occurring too quickly, or too slowly. The item velocity monitoring system is first “trained” in a learning mode of operations, during which item patterns and group patterns are evaluated and placed into a pattern database. The system then compares the observed item velocity to its model probability velocity, and if the observed item velocity deviates beyond the statistical model, a “velocity event” is generated, declaring one of the above selling “too quick” or “too slow” conditions. Once a velocity event is detected, an event handling routine displays the event, and can transmit the event information over a network (including the INTERNET) to a remote computer for additional analysis or record keeping. A “Loyalty Out-of-Stock System,” (LOSS) is incorporated in the above item velocity monitoring system which automatically detects when items for sale are out-of-stock (OOS), discovers the reasons for these “stock-outs,” and determines how customers react to these stock-outs. The LOSS operates on store data and models the expected item movement rate for each item under varying time-of-day, day-of-week, price, promotion, season, holiday, and market conditions; detects items that are moving abnormally slowly, thereby identifying items that may be improperly displayed; provides early warning that an item may go out-of-stock (OOS) by detecting items with abnormally high movement; detects and reports on items that are OOS at retail stores; summarizes OOS events for the store and retail chain management, and for suppliers, thereby identifying items that are over-stocked (too few OOS events), under-stocked (too many events), badly re-stocked (too long events); analyzes the OOS events to find patterns that explain why OOS's are occurring; and determines the impacts of these OOS events on store customers, thereby measuring losses to the retailer and supplier, and establishing the loyalty of consumers to the item, brand, and chain.
Owner:DUNNHUMBY LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products