Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10711 results about "Adverse effect" patented technology

Network based multiple sensor and control device with temperature sensing and control

A multifunction sensor device which provides various transducer functions including means for performing temperature sensing, humidity sensing, ambient light sensing, motion detection, thermostat functions, switching functions, load switching and dimming functions, displaying actual and set temperature values, displaying time of day values and a means to put the device in an on, off or auto mode. The device has utility in environments such as that found in offices, schools, homes, industrial plants or any other type of automated facility in which sensors are utilized for energy monitoring and control, end user convenience or artificial or natural cooling, heating and HVAC control. The device can be used as a switch or dimmer, sensor or thermostat as well as to adjust and control all natural and artificial lighting, temperature and humidity devices. Key elements of the invention include overcoming the difficulty of mounting diverse sensors or transducers within the same device or housing; permitting these various sensors to exist in a single package that can be mounted to a wall in a substantially flush manner; and eliminating the requirement of an air flow channel in the device, thus minimizing any adverse effects on the motion detecting element or sensor as well as providing built in partial hysteresis. The device may include additional transducers or sensors and is constructed such that the temperature and humidity sensors are neither exposed to the flow of air in a room or area nor in an airflow channel whereby a chimney effect may occur. The device can transmit and receive real time data, relative data and actual discrete data in addition to switching and controlling loads locally or remotely. An embodiment utilizing airflow channels to direct air over the temperature and humidity sensors is also disclosed.
Owner:ECKEL DAVID P +2

Implant to be implanted in bone tissue or in bone tissue supplemented with bone substitute material

An implant (1) to be implanted in bone tissue, e.g. a dental implant or an implant for an orthopedic application, comprises surface regions (4) of a first type which have e.g. osseo-integrative, inflammation-inhibiting, infection-combating and/or growth-promoting properties, and surface regions (8) of a second type which consist of a material being liquefiable by mechanical oscillation. The implant is positioned in an opening of e.g. a jawbone and then mechanical oscillations, e.g. ultrasound is applied to it while it is pressed against the bone. The liquefiable material is such liquefied at least partly and is pressed into unevennesses and pores of the surrounding bone tissue where after resolidification it forms a positive-fit connection between the implant and the bone tissue. The surface regions of the two types are arranged and dimensioned such that, during implantation, the liquefied material does not flow or flows only to a clinically irrelevant degree over the surface regions of the first type such enabling the biologically integrative properties of these surface regions to start acting directly after implantation. The implant achieves with the help of the named positive fit a very good (primary) stability, i.e. it can be loaded immediately after implantation. By this, negative effects of non-loading are prevented and relative movements between implant and bone tissue are reduced to physiological measures and therefore have an osseo-integration promoting effect.
Owner:WOODWELDING

Method and apparatus for optimizing GPS-based position location in presence of time varying frequency error

Position determination accuracy of a wireless communication device may be negatively affected by a large unaccounted GPS doppler bias, which in turn may affect GPS doppler estimations and GPS doppler measurements conducted by the wireless communication device. The quality of GPS doppler measurements is very important for position location, because poor quality GPS doppler measurements may prevent the wireless communication device from acquiring satellites in the most sensitive modes with narrow frequency ranges, which results in reduced GPS pseudorange measurement yield. Large unaccounted GPS doppler bias also adversely affects position accuracy because of the adverse effect on the GPS code phase measurements time propagation to common time prior to their use in position location calculation. The same is true in the case of unaccounted CDMA code doppler, through the adverse effect on the AFLT code phase measurements time propagation to common time prior to their use in a position location engine. This effect is the biggest concern in the case of large search windows. Therefore, the present disclosure provides a method of optimizing GPS based position location in the presence of time-varying frequency error, including the steps of continuously measuring and / or calculating resulting GPS doppler bias and CDMA code doppler bias and then minimizing their adverse effects with regard to position location determination by re-centering GPS doppler search windows based on the GPS doppler bias value, as well as using GPS doppler bias and CDMA code doppler bias value to properly propagate GPS pseudorange and AFLT pilot phase measurements, respectively, to common time prior to their use in a position location engine.
Owner:QUALCOMM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products