Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

158 results about "Jugular vein" patented technology

The jugular veins are veins that take deoxygenated blood from the head back to the heart via the superior vena cava.

System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.
Owner:UNIV OF SOUTHERN CALIFORNIA +1

Apparatus and method for intravascular catheter navigation using the electrical conduction system of the heart and control electrodes

A new apparatus, algorithm, and method (all called Invention) are introduced herein to support navigation and placement of an intravascular catheter using the electrical conduction system of the heart (ECSH) and control electrodes placed on the patient's skin. According to the present Invention, an intravascular catheter can be guided both in the arterial and venous systems and positioned at different desired locations in the vasculature in a number of different clinical situations. The catheter is connected to the apparatus using, for example, sterile extension cables, such that the apparatus can measure the electrical activity at the tip of the catheter. Another electrode of the apparatus is placed for reference on the patient's skin. In one embodiment of the present Invention, a control electrode is placed on the patient's chest over the manubrium of the sternum below the presternal notch. In this case, if a catheter is inserted in the venous system, for example in the basilic vein, the Invention will indicate if the tip of the catheter navigates from the insertion point in the basilic vein into the subclavian vein on the same side, into the subclavian vein counter laterally, into the jugular vein, into the superior vena cava, into the cavoatrial junction (CAJ), into the right atrium (RA), into the right ventricle (RV), or into the inferior vena cava (IVC). For the same location of a control electrode, if a catheter is inserted in the arterial system, the Invention will indicate when the tip of the catheter is navigating into the arch of the aorta, into the right coronary artery, into the left circumflex artery, or into the left ventricle (LV). In another embodiment of the present Invention, a control electrode can be placed on the sternum over the xiphoid process. In one embodiment of the present invention, a catheter can be inserted in the arterial systems by arterial radial, brachial or axillary access. In another embodiment of the present Invention, a catheter may be inserted into either the arterial or the venous systems by femoral or saphenous access. In one aspect of the present Invention, navigation maps are introduced for different locations in the vasculature which allow for easy identification of the location of the catheter tip. In another aspect of the present Invention, a novel algorithm is introduced to compute a navigation signal in real time using electrical signals from the tip of the catheter and from control electrodes. In another aspect of the present Invention, a novel algorithm is introduced to compute in real time navigation parameters from the navigation signal computes according to the present Invention. In another aspect of the present Invention, a method is introduced which makes use of the navigation signal to allow for placing an intravascular catheter at a desired location in the vasculature relative to the ECSH and to the control electrodes placed on the skin. In another aspect of the present Invention, the electrical signals obtained from control electrodes and from the tip of the catheter may be generated by the natural ECSH, e.g., the sino-atrial node (SAN), by artificial (implanted) pacemakers or by electrical generators external to the body. In yet another aspect of the Invention, an apparatus is introduced which supports data acquisition required by the computation of a navigation signal according to the present Invention.
Owner:BARD ACCESS SYST

System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time “live” ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.
Owner:UNIV OF SOUTHERN CALIFORNIA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products