Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

239 results about "Intravascular catheter" patented technology

Summary Information: Intravascular catheter. Intravascular catheter: An intravascular catheter is a thin hollow plastic tube that is placed into a blood vessel to introduce or remove fluid, monitor blood pressure, and introduce surgical instruments.

Ultrasound methods of positioning guided vascular access devices in the venous system

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Endovenous access and guidance system utilizing non-image based ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Endovascular access and guidance system utilizing divergent beam ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Transcutaneous medical device dressings and method of use

InactiveUS7137968B1Coloring be generateAdvantage of easeCatheterInfusion needlesSkin contactAdhesive
A transcutaneous device dressing and method for its use with a transcutaneous medical device, such as an intravascular catheter, which punctures the skin of a patient and which has a portion of the medical device protruding from the skin which can lead to infection. The dressing includes a top and a bottom dressing, both being formed from a flexible material and having upper and lower surfaces, with the lower surface being the skin facing surface in use. The bottom dressing has a slit formed therein extending from one edge inwardly to a termination point within the confines of the bottom dressing. An anti-microbial material is provided without the use of adhesives at the upper and lower surfaces of the bottom dressing, and at least at the lower surface of the top dressing. In use, the bottom dressing is placed next to the skin, the slit allowing the bottom dressing to surround the puncture site such that the lower surface of the bottom dressing is in contact with the skin while the upper surface of the bottom dressing is in contact with a portion of the medical device protruding from the skin. The top dressing is placed above the puncture site such that its lower surface is in contact with a portion of the medical device protruding from the skin. In this way, there is exposure of the portion of the medical device protruding from the skin to the anti-microbial activity of the anti-microbial material.
Owner:NUCRYST PHARMA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products