Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

4644results about "Other blood circulation devices" patented technology

Closed loop system for controlling insulin infusion

A closed loop infusion system controls the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The sensor signal is used to generate a controller input. The controller uses the controller input to generate commands to operate the delivery system. The delivery system infuses a liquid into the user at a rate dictated by the commands from the controller. Preferably, the sensor system monitors the glucose concentration in the body of the user, and the liquid infused by the delivery system into the body of the user includes insulin.

System for cardiac procedures

A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system. The heart muscle or myocardium is paralyzed by the retrograde delivery of a cardioplegic fluid to the myocardium through patient's coronary sinus and coronary veins, or by antegrade delivery of cardioplegic fluid through a lumen in the endovascular aortic partitioning device to infuse cardioplegic fluid into the coronary arteries. The pulmonary trunk may be vented by withdrawing liquid from the trunk through an inner lumen of an elongated catheter. The cardiac accessing system is particularly suitable for removing the aortic valve and replacing the removed valve with a prosthetic valve.

Endovascular system for arresting the heart

Devices and methods are provided for temporarily inducing cardioplegic arrest in the heart of a patient and for establishing cardiopulmonary bypass in order to facilitate surgical procedures on the heart and its related blood vessels. Specifically, a catheter based system is provided for isolating the heart and coronary blood vessels of a patient from the remainder of the arterial system and for infusing a cardioplegic agent into the patient's coronary arteries to induce cardioplegic arrest in the heart. The system includes an endoaortic partitioning catheter having an expandable balloon at its distal end which is expanded within the ascending aorta to occlude the aortic lumen between the coronary ostia and the brachiocephalic artery. Means for centering the catheter tip within the ascending aorta include specially curved shaft configurations, eccentric or shaped occlusion balloons and a steerable catheter tip, which may be used separately or in combination. The shaft of the catheter may have a coaxial or multilumen construction. The catheter may further include piezoelectric pressure transducers at the distal tip of the catheter and within the occlusion balloon. Means to facilitate nonfluoroscopic placement of the catheter include fiberoptic transillumination of the aorta and a secondary balloon at the distal tip of the catheter for atraumatically contacting the aortic valve. The system further includes a dual purpose arterial bypass cannula and introducer sheath for introducing the catheter into a peripheral artery of the patient.

Pumping cartridge having an integrated filter and method for filtering a fluid with the cartridge

The present invention involves, in some embodiments, reusable pump drive systems, which are coupled to removable, and preferably disposable, pumping cartridges. The invention provides, in some embodiments, novel pumping cartridges for use in pumping systems. One such cartridge includes an integrated filter element therein for filtering fluids, for example fluids pumped to the body of a patient in a medical procedure. In some embodiments, the integrated filter is utilized as a blood clot removal filter and in other embodiments is used to remove particulates liquids infused to a patient. The filter element includes a filter with pores therein that are preferably sized to permit essentially unrestricted flow of individual human blood cells therethrough and to block or collect blood clots, cell clumps, particulates etc. with sizes substantially larger than the average size of a human blood cell.

Retrograde perfusion monitoring and control system

Apparatus and methods for performing retrograde perfusion, especially during cardiopulmonary bypass operations, including dedicated pediatric scaled apparatus for retrograde perfusion of an adult human organ, organ system, or limb, especially the brain, employing small scale oxygenators and heat exchangers such as are designed for pediatric surgery; also including methods and apparatus for retrograde cerebral perfusion, using nonselective infravalvular cannulation of the superior vena cava, estimating the efficacy of cerebral perfusion by monitoring fluid flow across a valve of an internal jugular vein, modification of inflow pressure and administration of pharmacologic agents, and increasing fluid flow into a brain by occlusion of an inferior vena cava distal to its junction with an azygos vein.

Apparatus and methods for treating congestive heart disease

Methods and apparatus are provided for treating congestive heart by actively or passively enhancing perfusion to the renal arteries. A first embodiment comprises a specially configured balloon catheter and extracorporeal pump, wherein the pump operates in a “once-through” fashion or alternating volume displacement mode. In another embodiment the catheter includes a pair of balloons to isolate a region of the aorta, and a third balloon that directs flow into the renal arteries. In still further embodiments, a stent or cuff having a constricted region is deployed in or around the aorta, respectively, to create a backpressure upstream of the stent or cuff. Methods of enhancing renal perfusion also are provided.

Modular assembly for a portable hemodialysis system

A modular assembly for a portable hemodialysis system may include a dialysis unit, e.g., that contains suitable components for performing hemodialysis, such as a dialyzer, one or more pumps to circulate blood through the dialyzer, a source of dialysate, and one or more pumps to circulate the dialysate through the dialyzer, and a power unit having a housing that contains suitable components for providing operating power to the pumps of the dialysis unit. The power unit may be selectively connected to the dialysis unit and provide power (e.g., pneumatic power in the form of pressure and / or vacuum) to the dialysis unit for the pumps when connected to the dialysis unit, but may be incapable of providing power to the dialysis unit when disconnected from the dialysis unit. The dialysis unit and the power unit are sized and weighted to each be carried by hand by a human.

Single port cardiac support apparatus

A reverse flow pump comprising two concentric passageways and an interior compartment having cut out portions in communication with a pump passageway for the directional flow of fluid relative to the pump, and a rotor positioned within the interior compartment for reversing the directional flow of fluid through a region in communication with another pump passageway. A reverse flow pump and cannula system is further provided comprising an inner cannula adjoining a pump passageway, and an outer conduit adjoining another pump passageway for the reverse flow of fluid relative to the pump. A method of transporting fluid between body cavities is also provided comprising the steps of selecting a reverse flow pump and cannula system, forming an opening in a body passageway, positioning the outer conduit through the opening, inserting the inner cannula into the outer conduit so that the distal openings of the inner cannula and the outer conduit are positioned in separated portions of the body, connecting the inlet and the outlet passageways of the pump to the proximal ends of the inner cannula and the outer conduit, and activating the pump to transport fluid between the separated portions of the body.

Double-y-shaped multi-lumen catheter with selectively attachable hubs

A multi-lumen catheter and method for inserting same in a patient is disclosed. The catheter includes an elongated, central, multi-lumen tube portion having a proximal end and a distal end. The central tube portion has a substantially cylindrical outer shape and is internally segmented into a plurality of lumens. A distal branch portion includes a plurality of single-lumen distal extension tubes. A proximal branch portion includes a plurality of single-lumen proximal extension tubes. Each proximal extension tube has a distal first end and a proximal second end. The distal first end of each proximal extension tube is connected to the proximal end of the central tube portion such that the single lumen of each distal extension tube is in fluid communication with one of the plurality of lumens of the central tube portion. Each lumen of the central tube portion and the lumens of the distal and proximal extension tubes in fluid communication therewith define a flow path through the catheter. Selectively attachable hub connectors are provided for selective attachment to the distal extension tubes and connection of the catheter to a fluid exchange device.

Device for administering an injectable product in doses

The present invention provides a device for administering an injectable product in doses, the device including a casing, a container accommodated by the casing, a delivering appliance for delivering the product from the container, a drive for the delivering appliance, and a means for determining a malfunction of the device, wherein a vibrator motor is accommodated by the casing, the vibrator motor being triggered by the means for determining a malfunction such that it generates a vibrating alarm signal when a malfunction is determined.

Cryotreatment device and method

Devices and methods for cooling vessel walls to inhibit restenosis in conjunction with medical procedures such as coronary artery angioplasty. Stenosed vessel walls can be cooled prior to angioplasty, after angioplasty, or both. The invention is believed to inhibit restenosis through cooling to a temperature near freezing, preferably without causing substantial vessel wall cell death. One catheter device includes a distal tube region having coolant delivery holes radially and longitudinally distributed along the distal region. In some devices, holes spray coolant directly onto the vessel walls, with the coolant absorbed into the blood stream. In other embodiments, a balloon or envelope is interposed between the coolant and the vessel walls and the coolant returned out of the catheter through a coolant return lumen. Some direct spray devices include an occlusion device to restrict blood flow past the region being cooled. Pressure, temperature, and ultrasonic probes are included in some cooling catheters. Pressure control valves are included in some devices to regulate balloon interior pressure within acceptable limits. In applications using liquid carbon dioxide as coolant, the balloon interior pressure can be maintained above the triple point of carbon dioxide to inhibit dry ice formation. Some cooling catheters are coiled perfusion catheters supporting longer cooling periods by allowing perfusing blood flow simultaneously with vessel wall cooling. One coiled catheter is biased to assume a coiled shape when unconstrained and can be introduced into the body in a relatively straight shape, having a stiffening wire inserted through the coil strands.

Methods, compositions, and automated systems for separating rare cells from fluid samples

The present invention recognizes that diagnosis and prognosis of many conditions can depend on the enrichment of rare cells from a complex fluid sample. In particular, the enrichment of fetal cells from maternal samples, such as maternal blood samples, can greatly aid in the detection of fetal abnormalities or a variety of genetic conditions. In addition, the present invention recognizes that the enrichment of rare malignant cells from patient samples, can aid in diagnosis, prognosis, and development of therapeutic modalities for patients. The invention includes microfabricated filters for filtering fluid samples and methods of enriching rare cells of fluid samples using microfabricated filters of the present invention. The invention also includes solutions for the selective sedimentation of red blood cells (RBCs) from a blood sample and methods of using selective RBC sedimentation solutions for enriching rare cells of a fluid sample. Yet another aspect of the invention is an automated system for processing a fluid sample that includes: at least one filtration chamber that includes a microfabricated filter; automated means for directing fluid flow through at least one filtration chamber of the automated system, and means for collecting enriched rare cells. The present invention also includes methods of using automated systems for separating rare cells from fluid samples. Preferred fluid samples are blood, effusion, or urine samples, and rare cells that can be enriched from such sample include nucleated red blood cells and cancer cells.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products