Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

193 results about "Ascending aorta" patented technology

The ascending aorta (AAo) is a portion of the aorta commencing at the upper part of the base of the left ventricle, on a level with the lower border of the third costal cartilage behind the left half of the sternum.

System for cardiac procedures

A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system. The heart muscle or myocardium is paralyzed by the retrograde delivery of a cardioplegic fluid to the myocardium through patient's coronary sinus and coronary veins, or by antegrade delivery of cardioplegic fluid through a lumen in the endovascular aortic partitioning device to infuse cardioplegic fluid into the coronary arteries. The pulmonary trunk may be vented by withdrawing liquid from the trunk through an inner lumen of an elongated catheter. The cardiac accessing system is particularly suitable for removing the aortic valve and replacing the removed valve with a prosthetic valve.
Owner:EDWARDS LIFESCIENCES LLC

Endovascular system for arresting the heart

Devices and methods are provided for temporarily inducing cardioplegic arrest in the heart of a patient and for establishing cardiopulmonary bypass in order to facilitate surgical procedures on the heart and its related blood vessels. Specifically, a catheter based system is provided for isolating the heart and coronary blood vessels of a patient from the remainder of the arterial system and for infusing a cardioplegic agent into the patient's coronary arteries to induce cardioplegic arrest in the heart. The system includes an endoaortic partitioning catheter having an expandable balloon at its distal end which is expanded within the ascending aorta to occlude the aortic lumen between the coronary ostia and the brachiocephalic artery. Means for centering the catheter tip within the ascending aorta include specially curved shaft configurations, eccentric or shaped occlusion balloons and a steerable catheter tip, which may be used separately or in combination. The shaft of the catheter may have a coaxial or multilumen construction. The catheter may further include piezoelectric pressure transducers at the distal tip of the catheter and within the occlusion balloon. Means to facilitate nonfluoroscopic placement of the catheter include fiberoptic transillumination of the aorta and a secondary balloon at the distal tip of the catheter for atraumatically contacting the aortic valve. The system further includes a dual purpose arterial bypass cannula and introducer sheath for introducing the catheter into a peripheral artery of the patient.
Owner:EDWARDS LIFESCIENCES LLC

System and methods for performing endovascular procedures

A system for inducing cardioplegic arrest and performing an endovascular procedure within the heart or blood vessels of a patient. An endoaortic partitioning catheter has an inflatable balloon which occludes the ascending aorta when inflated. Cardioplegic fluid may be infused through a lumen of the endoaortic partitioning catheter to stop the heart while the patient's circulatory system is supported on cardiopulmonary bypass. One or more endovascular devices are introduced through an internal lumen of the endoaortic partitioning catheter to perform a diagnostic or therapeutic endovascular procedure within the heart or blood vessels of the patient. Surgical procedures such as coronary artery bypass surgery or heart valve replacement may be performed in conjunction with the endovascular procedure while the heart is stopped. Embodiments of the system are described for performing: fiberoptic angioscopy of structures within the heart and its blood vessels, valvuloplasty for correction of valvular stenosis in the aortic or mitral valve of the heart, angioplasty for therapeutic dilatation of coronary artery stenoses, coronary stenting for dilatation and stenting of coronary artery stenoses, atherectomy or endarterectomy for removal of atheromatous material from within coronary artery stenoses, intravascular ultrasonic imaging for observation of structures and diagnosis of disease conditions within the heart and its associated blood vessels, fiberoptic laser angioplasty for removal of atheromatous material from within coronary artery stenoses, transmyocardial revascularization using a side-firing fiberoptic laser catheter from within the chambers of the heart, and electrophysiological mapping and ablation for diagnosing and treating electrophysiological conditions of the heart.
Owner:EDWARDS LIFESCIENCES LLC

Devices and methods for performing avascular anastomosis

A system for performing an end-to-side vascular anastomosis, including an anastomosis device, an application instrument and methods for performing a vascular anastomosis. The system is applicable for performing an anastomosis between a vascular graft and the ascending aorta in coronary artery bypass surgery, particularly in port-access CABG surgery. A first aspect of the invention includes a vascular anastomosis staple. A first configuration has two parts: an anchor member, forming the attachment with the target vessel wall and a coupling member, forming the attachment with the bypass graft vessel. The anastomosis is completed by inserting the coupling member, with the graft vessel attached, into the anchor member. A second configuration combines the functions of the anchor member and the coupling member into a one-piece anastomosis staple. A second aspect of the invention includes an anastomotic fitting, having an inner flange over which the graft vessel is everted and an outer flange which contacts the exterior surface of the target vessel. A tailored amount of compression applied by the inner and outer flanges grips the target vessel wall and creates a leak-proof seal between the graft vessel and the target vessel. A third aspect of the invention has a flange to which the graft vessel attaches, by everting the graft vessel over the flange, and a plurality of staple-like members which attach the flange and the everted end of the graft vessel to the wall of the target vessel to form the anastomosis
Owner:HEARTPORT

Noninvasive continuous arterial blood pressure measuring method and equipment

The invention discloses a noninvasive continuous human body arterial blood pressure measuring method and equipment. The noninvasive continuous human body central arterial blood pressure measuring method comprises the steps as follows: calculating individualization parameters of a to-be-measured person artery blood vessel network model according to acquired pulse wave forms of radial arteries and brachial arteries; calculating radial artery blood pressure systolic pressure, diastolic pressure and blood pressure wave forms according to radial artery pulse wave speeds and artery blood vessel network parameters; calculating ascending aorta-radial artery transfer functions; further calculating central arterial blood pressure. The noninvasive continuous human body central arterial blood pressure measuring equipment consists of a signal processing and analyzing unit, a pulse wave and motion signal acquisition unit worn on the wrist as well as an electro-cardio and motion signal acquisition unit worn in front of the chest. According to the method and the equipment, electrocardiograms, the radial artery blood pressure, the central arterial blood pressure as well as motions and postures are monitored simultaneously, heart rate and electro-cardio morphological parameters are analyzed in various motion states, artery network model parameters and blood pressure parameters, particularly central arterial pressure wave form parameters, are analyzed, and the method and the equipment have great significance for prevention and control on cardiovascular diseases, particularly for prevention and control on high-risk diseases such as the hypertension, the coronary heart disease and the like.
Owner:南京茂森电子技术有限公司

Methods and apparatus for percutaneous aortic valve replacement

A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve comprised of a reversibly expandable occluding means, such as balloons, surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve with occluding means substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The ablation stent(s) displace the native valve tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the ablation stent(s) at the aortic annulus with precision and relative ease. Ablation of the native aortic valve removes the structural obstacles to precise PAV placement. The temporary aortic valve mediates the hemodynamic forces upon the devices as encountered by the surgeon following native valve ablation. The temporary valve also promotes patient stability through continuous coronary perfusion and a moderated transvalvular pressure gradient and regurgitation. Sequential delivery of low profile PAV components minimize the risk of trauma and injury to vascular tissues. Mathematical considerations for determining the optimum cross-sectional area for the temporary valve blood perfusion gaps are also described.
Owner:HOCOR CARDIOVASCULAR TECH

Method and apparatus for percutaneous aortic valve replacement

A method for percutaneous aortic valve (PAV) replacement and a temporary aortic valve used to facilitate the same. The temporary valve is comprised of a reversibly expandable occluding means, such as balloons, surrounding a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The native aortic valve is next dilated, and then ablated through deployment of an ablation stent. The ablation stent displaces the native valve tissues and remains within the aortic annulus to receive and retain the PAV. The PAV can then be positioned and deployed within the ablation stent with precision and ease. Ablation of the native aortic valve removes the structural obstacles to precise PAV placement. The temporary aortic valve mediates the hemodynamic forces encountered by the surgeon following native valve ablation. The temporary valve also promotes patient stability through continuous coronary perfusion and a moderated transvavlular pressure gradient. Mathematical considerations for determining the optimum cross-sectional area for the temporary valve blood perfusion gaps are also described.
Owner:HOCOR CARDIOVASCULAR TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products