Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1669 results about "Torque transmission" patented technology

Hybrid vehicle drive for a motor vehicle

A hybrid vehicle drive for a motor vehicle includes an internal combustion engine and an electric machine which is selectively coupled with the internal combustion engine. The electric machine can be operated as a generator and as a motor. Regulation device which responds to a reference signal predetermined by a reference signal preset device are provided for the active damping of vibrations, especially torsional vibrations in the torque transmission path between the internal combustion engine and wheels of the motor vehicle driven by the latter. The regulation device also respond to sensing device which deliver an actual-value vibration signal containing vibration information about a rotating structural component of the motor vehicle and control the load torque exerted on the internal combustion engine by the electric machine for reducing or eliminating the vibrations of the structural component. An analysis device for determining a frequency spectrum of the actual-value vibration signal is associated with the regulation device. The reference signal preset device establishes a reference signal with predetermined frequency spectrum. The regulation device control the frequency spectrum of the load torque exerted on the internal combustion engine by the electric machine such that excessive spectral vibrations of the actual-value vibration signal are reduced or eliminated.
Owner:ZF FRIEDRICHSHAFEN AG

Drive arrangement for a motor vehicle

A hybrid drive arrangement for a motor vehicle including an internal combustion engine (1), which is connected or can be connected in a wheel-driving manner, via a first torque transmission path (11, 13), to a driving wheel (15) of the motor vehicle. An electric machine (19), which is operable at least as a motor, is fed from an electrical energy source (7, 29) of the motor vehicle and is connected or can be connected in a wheel-driving manner, via a second torque transmission path (21, 23, 13), to the driving wheel (15). Arranged in the first and/or the second torque transmission path are coupling elements (11, 23) which, in a first operating state, permit the driving of the motor vehicle by the wheel-driving torque of the electric machine (19), operated as a motor, without mechanical torque support from the internal combustion engine (1), and which, in a second operating state, permit the driving of the motor vehicle by the internal combustion engine (1), without mechanical torque support from the electric machine (19). Depending on the driving speed of the motor vehicle, an electronic driving control system (31) activates the first operating state, at least in a first range of driving speeds including standstill of the vehicle, if the driving speed is less than a predetermined speed limit, and activates the second operating state, at least in a second range including the maximum speed of the vehicle, if the driving speed is greater.
Owner:ZF FRIEDRICHSHAFEN AG

Bi-directional overrunning clutch

A bi-directional overrunning clutch is disclosed for controlling torque transmission between a secondary drive shaft and secondary driven shafts. The overrunning clutch includes a pinion input shaft in a differential housing that engages with a clutch housing rotatably disposed within the differential housing. At least one race is located adjacent to the clutch housing and is engaged with an output shaft. A cage is located between the race and the clutch housing. The cage is movable with respect to the clutch housing. A <DEL-S DATE="20030304" ID="DEL-S-00001"/>first<DEL-E ID="DEL-S-00001"/> coil is mounted within the differential housing adjacent to the cage and is adapted to produce an electromagnetic field when energized which causes the cage to drag with respect to the clutch housing. The dragging of the cage with respect to the clutch housing positions <INS-S DATE="20030304" ID="INS-S-00001"/>rolls within <INS-E ID="INS-S-00001"/>the cage to engage the clutch housing with the race when wheels on a primary drive shaft lose traction. <DEL-S DATE="20030304" ID="DEL-S-00002"/>A<DEL-E ID="DEL-S-00002"/> <INS-S DATE="20030304" ID="INS-S-00002"/>If desired a <INS-E ID="INS-S-00002"/>second coil <DEL-S DATE="20030304" ID="DEL-S-00003"/>is<DEL-E ID="DEL-S-00003"/> <INS-S DATE="20030304" ID="INS-S-00003"/>may be <INS-E ID="INS-S-00003"/>mounted within the differential housing adjacent <DEL-S DATE="20030304" ID="DEL-S-00004"/>adjacent<DEL-E ID="DEL-S-00004"/> to the cage. The second coil is adapted to produce an electromagnetic field when energized which advances cage with respect to the clutch housing causing the clutch housing to engage with the races. When the second coil is activated, the output shaft drives the pinion input shaft producing engine braking. An electronic control system is utilized to control the energizing of the coils.
Owner:HILLIARD

Hydrodynamic torque converter

A hydrodynamic torque converter includes a converter housing and a turbine wheel which is arranged in the converter housing and is rotatable with respect to the converter housing about a rotational axis of the converter. The torque converter further includes a lockup clutch for producing a torque transmission connection between the converter housing and the turbine wheel. The lockup clutch has a first friction surface arrangement held by a first friction surface carrier arrangement substantially fixed with respect to rotation relative to the converter housing, a second friction surface arrangement is held by a second friction surface carrier arrangement substantially fixed with respect to rotation relative to the turbine wheel, a contact pressing arrangement for pressing the first and the second friction surface arrangement against one another in frictional contact, and an abutment arrangement at which the first and second friction surface arrangement can be supported substantially in the direction of the axis of rotation when pressed by the contact pressure arrangement. The first friction surface carrier arrangement has a substantially annular body region connected either directly or indirectly with the converter housing and driver projections which are arranged at a distance from one another in the circumferential direction proceeding from the body region. Respective counter-driver projections at the first friction surface arrangement engage between these driver projections.
Owner:ZF FRIEDRICHSHAFEN AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products