Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

23672results about "Survey" patented technology

Intergrated reservoir optimization

A method of managing a fluid or gas reservoir is disclosed which assimilates diverse data having different acquisition time scales and spatial scales of coverage for iteratively producing a reservoir development plan that is used for optimizing an overall performance of a reservoir. The method includes: (a) generating an initial reservoir characterization, (b) from the initial reservoir characterization, generating an initial reservoir development plan, (c) when the reservoir development plan is generated, incrementally advancing and generating a capital spending program, (d) when the capital spending program is generated, monitoring a performance of the reservoir by acquiring high rate monitor data from a first set of data measurements taken in the reservoir and using the high rate monitor data to perform well-regional and field-reservoir evaluations, (e) further monitoring the performance of the reservoir by acquiring low rate monitor data from a second set of data measurements taken in the reservoir, (f) assimilating together the high rate monitor data and the low rate monitor data, (g) from the high rate monitor data and the low rate monitor data, determining when it is necessary to update the initial reservoir development plan to produce a newly updated reservoir development plan, (h) when necessary, updating the initial reservoir development plan to produce the newly updated reservoir development plan, and (i) when the newly updated reservoir development plan is produced, repeating steps (c) through (h). A detailed disclosure is provided herein relating to the step (a) for generating the initial reservoir characterization and the step (b) for generating the initial reservoir development plan.
Owner:SCHLUMBERGER TECH CORP

Integrated reservoir optimization

A method of managing a fluid or gas reservoir is disclosed which assimilates diverse data having different acquisition time scales and spatial scales of coverage for iteratively producing a reservoir development plan that is used for optimizing an overall performance of a reservoir. The method includes: (a) generating an initial reservoir characterization, (b) from the initial reservoir characterization, generating an initial reservoir development plan, (c) when the reservoir development plan is generated, incrementally advancing and generating a capital spending program, (d) when the capital spending program is generated, monitoring a performance of the reservoir by acquiring high rate monitor data from a first set of data measurements taken in the reservoir and using the high rate monitor data to perform well-regional and field-reservoir evaluations, (e) further monitoring the performance of the reservoir by acquiring low rate monitor data from a second set of data measurements taken in the reservoir, (f) assimilating together the high rate monitor data and the low rate monitor data, (g) from the high rate monitor data and the low rate monitor data, determining when it is necessary to update the initial reservoir development plan to produce a newly updated reservoir development plan, (h) when necessary, updating the initial reservoir development plan to produce the newly updated reservoir development plan, and (i) when the newly updated reservoir development plan is produced, repeating steps (c) through (h). A detailed disclosure is provided herein relating to the step (a) for generating the initial reservoir characterization and the step (b) for generating the initial reservoir development plan.
Owner:SCHLUMBERGER TECH CORP

Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters

A system and method of communicating among devices via a piping structure using at least one induction choke about the piping structure to route a time-varying current carrying communication signals between the devices. A communications system comprises a piping structure, a first communication device, a second communication device, and an induction choke. The piping structure comprises a first location, a second location, and an electrically conductive portion extending between the first and second locations. The first and second locations are distally spaced along the piping structure. The first and second communication devices are each electrically connected to the electrically conductive portion of the piping structure along the first location and second location, respectively, and each is adapted to send and receive communication signals via time-varying current. The induction choke is located about an electrically choked portion of the electrically conductive portion of the piping structure, such that the induction choke is adapted to route time-varying current within the piping structure between the electrical connection location for the first communication device and the electrical connection location for the second communication device, and such that the first communication device can communicate with the second communication device via the piping structure. A preferred application of the present invention is a well for producing petroleum products (e.g., oil, natural gas), comprising a communication system as described above.
Owner:SHELL OIL CO

Methods and apparatus for monitoring and controlling oil and gas production wells from a remote location

InactiveUS6873267B1Maximum cost-effectivenessSurveyFluid removalData acquisitionPetroleum
The invention provides apparatus and methods for monitoring and controlling hydrocarbon production wells and/or injection wells from a remote location. The apparatus for monitoring and controlling one or more hydrocarbon production wells or injection wells from a remote location comprises one or more surface control and data acquisition systems; one or more sensors disposed in communication with the one or more control and data acquisition systems; one or more downhole flow control devices disposed in communication with the one or more control and data acquisition systems; and one or more remote controllers disposed in communication with the one or more control and data acquisition systems. Preferably, the remote controller comprises a computer having an internet access disposed in communication with the one or more control and data acquisition systems through a communication device comprising an internet web site server. The method for monitoring and controlling a downhole hydrocarbon production well or an injection well comprises: transmitting data collected by a downhole sensor module to a control and data acquisition system; evaluating downhole operating conditions and optimizing downhole operating parameters utilizing an optimization software program disposed in communication with the control and data acquisition system; and transmitting signals between the control and data acquisition system system and a remote controller utilizing a satellite communication system, the remote controller comprising a computer and an internet browser control access adapted to display operating conditions and parameters and to accept instructions to change operating parameters.
Owner:WEATHERFORD TECH HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products