Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1077results about "Geomodelling" patented technology

Method and system for accelerating and improving the history matching of a reservoir simulation model

InactiveUS20070016389A1Improve predicted recoveryFaster and reliable pressureSurveyGeomodellingNerve networkErrors and residuals
The present invention, in one embodiment, is directed to a method and system for accelerating and improving the history matching of a well bore and / or reservoir simulation model using a neural network. The neural network provides a correlation between the calculated history match error and a selected set of parameters that characterize the well bore and / or the reservoir. The neural network iteratively varies a selection and / or the value of the parameters to provide at least one set of history match parameters having a value that provides a minimum for the calculated history matching error.
Owner:OZGEN CETIN

Wireless reservoir production control

A reservoir production control system includes a plurality of wells for producing a reservoir linked to a central computer over a downhole communication network and a surface communication network. Both the downhole and the surface communication networks are wireless communications paths for transmitting downhole data and surface data to the central computer. Both networks include a series of interconnected tubing or pipe that allows transmission of data over electrically isolated portions of the pipe and tubing. After integrating and analyzing all relevant data and comparing the data with a reservoir model, the central computer initiates changes in a plurality of downhole control devices associated with the wells, thereby optimizing the production of the reservoir.
Owner:SHELL OIL CO

Method and program for simulating a physical system using object-oriented programming

The invention relates to an object-oriented method for simulating a property of at least one fluid in a fluid-containing physical system in which the physical system is represented by a multiplicity of volumetric cells and a multiplicity of connections between cells. The method uses cell-group objects and connection-group objects in the simulation. The invention can optionally comprise additional objects such as an object containing the entire model of the simulation and another object containing a portion of the entire model.
Owner:EXXONMOBIL UPSTREAM RES CO

Model Predicting Fracturing of Shale

A model for predicting fracturing in shale can minimize surface disruption, protect groundwater, maximize efficiency of hydraulic fracturing, and manage fluids used in unconventional gas development. The model provides a more comprehensive understanding of the geological, geophysical, and geomechanical properties of shales and imbeds these properties in geomechanical computer simulations to predict both the reservoir performance from the fracturing, and the associated microseismic events generated by fracturing. Since the geological and geophysical properties can be estimated from surface seismic, well logs, and geologic concepts with regional context; the performance of the fracturing can be predicted and optimized. Since the microseismic events can be predicted with the model, the simulations can be verified and the model can be updated to be consistent with the observed microseismic.
Owner:ION GEOPHYSICAL CORP

System and method for performing oilfield simulation operations

The invention relates to a method for performing operations of an oilfield having at least one process facilities and at least one wellsite operatively connected thereto, each at least one wellsite having a wellbore penetrating a subterranean formation for extracting fluid from or injecting fluid to an underground reservoir therein. The method involves selectively coupling a plurality of oilfield simulators according to a predefined configuration, each oilfield simulator modeling at least a portion of the oilfield, a first oilfield simulator of the plurality of oilfield simulators receives an oilfield control parameter as an input, identifying an uncertainty parameter associated with a plurality of probable values each corresponding to a weighted probability, a second oilfield simulator of the plurality of oilfield simulators receives the uncertainty parameter as an input, modeling the operations of the oilfield to generate an estimated performance by selectively communicating between the plurality of oilfield simulators, the operations of the oilfield is modeled with a predetermined value of the oilfield control parameter and at least one of the plurality of probable values of the uncertainty parameter; and identifying an optimal value of the oilfield control parameter based on the estimated performance.
Owner:SCHLUMBERGER TECH CORP

Planning and Performing Drilling Operations

The present disclosure relates to dynamically incorporating and economically validating drilling decisions. A computer system having a memory and central processing unit is provided and a knowledge store residing in the computer system is populated with data. The data may include surface drilling parameter data, bottomhole assembly data, bit records, measurement-while-chilling data, logging-while-drilling data, drilling event data, and lessons learned data. The data may be correlated data from one or more offset wells. One or more computerized static or dynamic contextual earth models are provided and used to dynamically incorporate and economically validate the drilling decisions. The one or more earth models can be updated in real-time.
Owner:SCHLUMBERGER TECH CORP

Optimizing Drilling Operations Using Petrotechnical Data

A method for optimizing drilling operations. The method includes providing an earth model of a volume having a well, obtaining petrotechnical data about the volume while drilling the well, comparing the petrotechnical data with the earth model, updating the earth model with the petrotechnical data based on the comparison, and modifying a drilling plan of the well using the updated earth model.
Owner:WESTERNGECO LLC

Method For Predicting Well Reliability By Computer Simulation

Methods of predicting earth stresses in response to pore pressure changes in a hydrocarbon-bearing reservoir within a geomechanical system, include establishing physical boundaries for the geomechanical system and acquiring reservoir characteristics. Geomechanical simulations simulate the effects of changes in reservoir characteristics on stress in rock formations within the physical boundaries to determine the rock formation strength at selected nodes in the reservoir. The strength of the rock formations at the nodes is represented by an effective strain (εeff), which includes a compaction strain (εc) and out-of-plane shear strains (γ1-3, Y2-3) at a nodal point. The methods further include determining an effective strain criteria (εeffcr) from a history of well failures in the physical boundaries. The effective strain (εeffcr) at a selected nodal point is compared with the effective strain criteria (εeffcr) to determine if the effective strain (εeff) exceeds the effective strain criteria (εeffcr).
Owner:EXXONMOBIL UPSTREAM RES CO

Modeling geologic objects in faulted formations

A system and method of modeling a geological body in a contemporary formation is presented that includes constructing a geological object based on an original depositional paleo-space associated with the contemporary formation, and copying the geological object, transforming the copy of the geological object based on a deformation model of the contemporary formation using acquired data, the transforming allowing modeling of the deformed formation geological body and a lateral extent spanning a plurality of fault blocks.
Owner:SCHLUMBERGER TECH CORP

Method of generating a grid on a heterogenous formation crossed by one or more geometric discontinuities in order to carry out simulations

A method of generating a hybrid grid of a heterogeneous formation crossed by one or more geometric discontinuities such as, for example, an underground formation where one or more wells have been drilled, or a fractured formation, by combining structured grids and non-structured grids in order to carry out simulations in accordance with a defined numerical pattern is disclosed. Hybrid gridding is performed by associating a first structured grid (G1) for gridding of the heterogeneous medium considering discontinuities thereof with second structured, radial type grids (G2) for gridding of a zone around each pipe or well, which allows better consideration of constraints linked with flows in the zone. In order to connect the first grid of the medium and the second well grids, non-structured transition grids (G3) are interposed there between. A power diagram technique is used, which is particularly advantageous in that it allows appropriate connection of non-regular structured grids. An application is hydrocarbon reservoir simulation.
Owner:INST FR DU PETROLE

Method of quantifying hydrocarbon formation and retention in a mother rock

The method according to the invention allows the formation of oil and the retention phenomenon in the mother rock to be modelled. Organic matter characterization experiments are used to establish the molecular model (MM) of the initial sample (E). The thermal cracking reaction of this molecular model is reproduced by dynamic molecular simulation computations with a reactive force field (RMD) and validated by comparison with experimental data. The reaction mechanism obtained (SR) allows to carry out a kinetic study (C) by variation of the temperature parameter. The phase equilibria (PES) of the reaction medium are determined at any time from dynamic simulation. The successive phase equilibrium assessments at various progress stages of the cracking reaction allow following the physicochemical evolution (PC) of the thermal maturation of the organic sample studied. The free hydrocarbons (liquid and gaseous) that are not retained in the solid residue can be quantified throughout numerical modelling of the sample maturation; representing, in the sedimentary basins, the hydrocarbons that are not retained in the organic matrix of the mother rock (Q). This quantity can be used as an indicator or an input value for the retention threshold in basin models.
Owner:INST FR DU PETROLE

Reservoir architecture and connectivity analysis

An interactive system and method of operating the system to define and evaluate a model of a hydrocarbon reservoir. The reservoir model is defined from extrinsic information such as seismic surveys, well logs, and the like, and is based on elements of formation regions, connections among the regions, wells, and perforations. A boundary-element method is used to determine pressure interference responses, corresponding to the pressure at a perforation in response to a single perforation producing fluid at a unit flow rate. These pressure interference responses are then convolved with measured well flow rates obtained during production to arrive at estimates of the wellbore pressure at one or more wells of interest. The estimated wellbore pressure can be compared with downhole pressure measurements to validate the reservoir model, or to provoke the user into modifying the model and repeating the evaluation of the model.
Owner:BP CORP NORTH AMERICA INC

System and method for characterizing fractures in a subsurface reservoir

ActiveUS20100250216A1Fracture property can be optimizedElectric/magnetic detection for well-loggingGeomodellingPressure dataDynamic data
The disclosed methods, systems, and software are described to optimize fracture characteristics and simulate fluid flow rates in a well model. The well model, which includes at least one fracture intersecting a production well, is generated with static and dynamic data. Fluid flow in the well model is simulated to obtain simulated fluid flow rates between fractures and the well. Fracture properties, such as length, height and aperture, are then updated responsive to measured and simulated fluid flow rates. Multiple simulation runs and updating of the fracture properties can be performed until the simulated fluid flow rates converge with the measured fluid flow rates. Pressure data can be used to determine gridblock permeability, which in turn helps constrain the model, thus providing more reliable fracture properties. Uncertainty ranges of the fracture properties can also be calculated.
Owner:CHEVROU USA INC

Systems and methods for coordinated editing of seismic data in dual model

A system and method may model physical geological structures. Seismic and geologic data may be accepted. A three-dimensional (3D) transformation may be generated between a 3D present day model having points representing present locations of the physical geological structures and a 3D past depositional model having points representing locations where the physical geological structures were originally deposited. An indication may be accepted to locally change the 3D transformation for a subset of sampling points in a first model of the models. The 3D transformation may be locally changed to fit the updated subset of sampling points. A locally altered or updated version of the first model and, e.g., second model, may be displayed where local changes to the first model are defined by the locally changed 3D transformation. The transformation may also be used to extract geobodies in the past depositional model.
Owner:ASPEN PARADIGM HLDG LLC

Methods and systems for constructing and using a subterranean geomechanics model spanning local to zonal scale in complex geological environments

In an exemplary embodiment, a method and system is disclosed for developing a subterranean geomechanics model of a complex geological environment. The method can include estimating a pore pressure field, a stress field, a geomechanics property field, and a geological structure field from a geological concept model; geostatistically interpolating vectors and tensors from the estimated fields; and combining the results from the estimated fields and the geostatistically interpolated vectors and tensors to derive a geostatistical geomechanical model of the geological environment.
Owner:YOWAREN ELAN

Scalable Simulation of Multiphase Flow in a Fractured Subterranean Reservoir as Multiple Interacting Continua

A subterranean reservoir where the pore space of media or formation rock is multimodal, and the media may have imbedded multiple scales of fracture networks, is simulated. The modes of the pore system and the scale of fracture networks are each represented as a separate, but interactive continuum with the other. The simulation allows multiple continua to be co-located and multi-interacting, in that each continuum may have current and counter-current multiple multiphase exchanges with other continua.
Owner:SAUDI ARABIAN OIL CO

Method for history matching and uncertainty quantification assisted by global optimization techniques utilizing proxies

A method for forecasting production from a hydrocarbon producing reservoir, the method includes defining an objective function and characteristics of a history-matched model of a reservoir and acceptable error E. At least one geological realization of the reservoir is created representing a probable geological setting. For each geological realization, a global optimization technique is used to perform history matching in a series of iterative steps to obtain acceptable models. Production of the reservoir is forecasted based upon simulation runs of the respective models.
Owner:CHEVROU USA INC

Method For Modeling Deformation In Subsurface Strata

A method for modeling deformation in subsurface strata, including defining physical boundaries for a geomechanical system. The method also includes acquiring one or more mechanical properties of the subsurface strata within the physical boundaries, and acquiring one or more thermal properties of the subsurface strata within the physical boundaries. The method also includes creating a computer-implemented finite element analysis program representing the geomechanical system and defining a plurality of nodes representing points in space, with each node being populated with at least one of each of the mechanical properties and the thermal properties. The program solves for in situ stress at selected nodes within the mesh.
Owner:EXXONMOBIL UPSTREAM RES CO

Method For Building A Three Dimensional Cellular Partition Of A Geological Domain

The invention concerns a method for building a three-dimensional (3D) cellular partition covering a 3D geological domain by defining the cells of the partition, characterized in that said method comprises the following steps A “3D screen construction step” for constructing a 3D screen which is a 3D elementary partition covering the geological domain, said 3D screen being composed of a plurality of voxels (Vi) which are elementary volume elements, A “voxel painting step” for associating a cell identifier (Cell-id) to each voxel, A “cell definition step” for defining the cells of the geological domain, each cell of the geological domain being defined as the subset of voxels of the 3D screen associated to the same cell identifier, thereby allowing the definition of the cells of the geological domain without having to code the geometry and / or topology of said cells in said geological volume. The invention further provides a “parametric” method and a “cookiecutter” method using such method for building a 3D cellular partition.
Owner:PARADIGM FRANCE

Method for forecasting the production of a petroleum reservoir utilizing genetic programming

A method utilizing genetic programming to construct history matching and forecasting proxies for reservoir simulators. Acting as surrogates for computer simulators, the genetic programming proxies evaluate a large number of reservoir models and predict future production forecasts for petroleum reservoirs.
Owner:CHEVROU USA INC

Method for updating a geological reservoir model by means of dynamic data

A method for updating a geological reservoir model by integration of dynamic data having application, for example, to petroleum reservoir development. An initial map (y) of petrophysical properties is constructed by means of a geostatistical simulator and of static data. Then an initial set of gradual pilot points (PPi) and at least one complementary set of gradual pilot points (PPc) are constructed. A combined set of gradual pilot points (PP(t)) is then constructed by combining these sets of gradual pilot points according to the gradual deformation method wherein at least one deformation parameter is a characteristic parameter of said pilot points (position and / or value). The initial map (y) is then modified, the deformation parameters are modified according to the dynamic data and the procedure is repeated until a stop criterion is reached and the geological reservoir model is updated by associating the map thus optimized with the grid of the model.
Owner:INST FR DU PETROLE

Method For Simulating Fractional Multi-Phase/Multi-Component Flow Through Porous Media

A method for computing or estimating fractional, multi-phase / multi-component flow through a porous medium employing a 3D digital representation of a porous medium and a computational fluid dynamics method to calculate flow rates, pressures, saturations, internal velocity vectors and other flow parameters is described. The method employs a unique method of introducing non-wetting and wetting fluids into the pores at the inlet face of the 3D digital representation of a porous medium and a novel process control application to achieve quasi-steady state flow at low inlet concentrations of non-wetting fluid. In addition, the method of the present invention reduces the time required to simulate to complete the fluid dynamic calculations. The resulting values of flow of non-wetting fluid, wetting fluid, saturation, and other parameters are used to generate plots of relative permeability imbibition and drainage curves. Computerized systems and programs for performing the method are also provided.
Owner:HALLIBURTON ENERGY SERVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products