Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3920 results about "Nerve network" patented technology

Calculation apparatus and method for accelerator chip accelerating deep neural network algorithm

The invention provides a calculation apparatus and method for an accelerator chip accelerating a deep neural network algorithm. The apparatus comprises a vector addition processor module, a vector function value calculator module and a vector multiplier-adder module, wherein the vector addition processor module performs vector addition or subtraction and/or vectorized operation of a pooling layer algorithm in the deep neural network algorithm; the vector function value calculator module performs vectorized operation of a nonlinear value in the deep neural network algorithm; the vector multiplier-adder module performs vector multiplication and addition operations; the three modules execute programmable instructions and interact to calculate a neuron value and a network output result of a neural network and a synaptic weight variation representing the effect intensity of input layer neurons to output layer neurons; and an intermediate value storage region is arranged in each of the three modules and a main memory is subjected to reading and writing operations. Therefore, the intermediate value reading and writing frequencies of the main memory can be reduced, the energy consumption of the accelerator chip can be reduced, and the problems of data missing and replacement in a data processing process can be avoided.
Owner:INST OF COMPUTING TECH CHINESE ACAD OF SCI

Medical information extraction system and method based on depth learning and distributed semantic features

ActiveCN105894088AAvoid floating point overflow problemsHigh precisionNeural learning methodsNerve networkStudy methods
he invention discloses a medical information extraction system and method based on depth learning and distributed semantic features. The system is composed of a pretreatment module, a linguistic-model-based word vector training module, a massive medical knowledge base reinforced learning module, and a depth-artificial-neural-network-based medical term entity identification module. With a depth learning method, generation of the probability of a linguistic model is used as an optimization objective; and a primary word vector is trained by using medical text big data; on the basis of the massive medical knowledge base, a second depth artificial neural network is trained, and the massive knowledge base is combined to the feature leaning process of depth learning based on depth reinforced learning, so that distributed semantic features for the medical field are obtained; and then Chinese medical term entity identification is carried out by using the depth learning method based on the optimized statement-level maximum likelihood probability. Therefore, the word vector is generated by using lots of unmarked linguistic data, so that the tedious feature selection and optimization adjustment process during medical natural language process can be avoided.
Owner:神州医疗科技股份有限公司 +1

Statistically qualified neuro-analytic failure detection method and system

An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Chinese question-answering system based on neural network

The invention discloses a Chinese question-answering system based on a neural network, which comprises a user interface module, a question word pre-segmentation module, a nerve cell pre-tagging module, a learning and training module, a nerve cell knowledge base module, a semantic block identification module, a question set index module and an answer reasoning module. The system comprises the steps of: firstly adopting an SIE encoding mode to encode the in-vocabulary words of the semantic block according to corresponding position, later converting an identification problem of the question semantic block into a tagging classification problem, and then adopting a classification model based on the neural network to determine the semantic structure of the question, and finally combing the semantic structure of the question to realize the question similarity computation based on the neural network and comparing the weight of various semantic features of the question by extracting the tagged semantic features of the question, thereby providing a basis for final answer reasoning. The Chinese question-answering system integrates the syntax, the semantics and the contextual knowledge of the question and can simulate the process that human beings process the sentence.
Owner:HUAZHONG NORMAL UNIV

Solving the distal reward problem through linkage of stdp and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Human face detection method and detection device based on multi-task cascade-connection convolution neural network

The invention discloses a human face detection method and a detection device based on multi-task cascade-connection convolution neural network, wherein the method comprises: establishing a cascade-connection multi-level convolution neural network; using the human face front samples, the human face back samples, some parts of the human face and the human face's key point samples as the training samples to train the multi-level convolution neural network to learn the tasks of human face categorizing, human face area position regression and human face's key point positioning; and utilizing the well trained multi-level convolution neural network to make human face detection from the to-be-detected image wherein in the training stage, both the online manner and the offline manner are combined to extract the human face back samples as the training samples. According to the invention, based on the cascade-connection multi-level convolution neural network, it is possible to learn the characteristics with stronger robustness, and at the same time, through the combination of the online manner and the offline manner to extract the back samples, the categorizing capability of the network is enhanced, so that the detection capability and the accuracy of the network are increased, and that the running speed of the method in an actual product is ensured.
Owner:智慧眼科技股份有限公司

Method for real-time traffic analysis on packet networks

An architecture for capture and generation, and a set of methods for characterization, prediction, and classification of traffic in packet networks are disclosed. The architecture consists of a device that stores packet timing information and processes the data so that characterization, prediction, and classification algorithms can perform operations in real-time. A methodology is disclosed for real-time traffic analysis, characterization, prediction, and classification in packet networks. The methodology is based on the simultaneous aggregation of packet arrival times at different times scales. The traffic is represented at the synchronous carrier level by the arrival or non-arrival of a packet. The invention does not require knowledge about the information source, nor needs to decode the information contents of the packets. Only the arrival timing information is required. The invention provides a characterization of the traffic on packet networks suitable for a real-time implementation. The methodology can be applied in real-time traffic classification by training a neural network from calculated second order statistics of the traffic of several known sources. Performance descriptors for the network can also be obtained by calculating the deviation of the traffic distribution from calculated models. Traffic prediction can also be done by training a neural network from a vector of the results of a given processing against a vector of results of the subsequent processing unit; noticing that the latter vector contains information at a larger time scale than the previous. The invention also provides a method of estimating an effective bandwidth measure in real time which can be used for connection admission control and dynamic routing in packet networks. The invention provides appropriate traffic descriptors that can be applied in more efficient traffic control on packet networks.
Owner:TELECOMM RES LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products