Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

178 results about "Synaptic weight" patented technology

In neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research.

Calculation apparatus and method for accelerator chip accelerating deep neural network algorithm

The invention provides a calculation apparatus and method for an accelerator chip accelerating a deep neural network algorithm. The apparatus comprises a vector addition processor module, a vector function value calculator module and a vector multiplier-adder module, wherein the vector addition processor module performs vector addition or subtraction and/or vectorized operation of a pooling layer algorithm in the deep neural network algorithm; the vector function value calculator module performs vectorized operation of a nonlinear value in the deep neural network algorithm; the vector multiplier-adder module performs vector multiplication and addition operations; the three modules execute programmable instructions and interact to calculate a neuron value and a network output result of a neural network and a synaptic weight variation representing the effect intensity of input layer neurons to output layer neurons; and an intermediate value storage region is arranged in each of the three modules and a main memory is subjected to reading and writing operations. Therefore, the intermediate value reading and writing frequencies of the main memory can be reduced, the energy consumption of the accelerator chip can be reduced, and the problems of data missing and replacement in a data processing process can be avoided.
Owner:INST OF COMPUTING TECH CHINESE ACAD OF SCI

Feedback artificial neural network training method and feedback artificial neural network calculating system

The invention discloses a feedback artificial neural network training method and a feedback artificial neural network calculating system and belongs to the field of calculation of neural networks. According to the artificial neural network training method, the synapse weight is adjusted according to a feedforward signal and a feedback signal at the two ends of each neural synapse; when the signals at the two ends of each neural synapse are an excitation feedforward signal and an excitation feedback signal respectively, the synapse weight is adjusted to the maximum value; when the signals at the two ends of each neural synapse are a tranquillization feedforward signal and an excitation feedback signal respectively, the synapse weight is adjusted to the minimum value. According to the feedback artificial neural network calculating system, each node circuit comprises a calculating module, a feedforward module and a feedback module and the node circuits are connected through the neural synapses simulated by memristors, and a series of pulse signals are adopted to achieve the feedback artificial neural network training method. An artificial neural network provided by the system and the method is high in rate of convergence, and the artificial neural network calculating system is few in control element, low in energy consumption and capable of being applied to data mining, pattern recognition, image recognition and other respects.
Owner:HUAZHONG UNIV OF SCI & TECH

A convolution neural network-on-chip learning system based on nonvolatile memory

The invention discloses a convolution neural network on-chip learning system based on non-volatile memory, comprising an input module, a convolution neural network module, an output module and a weight update module. The on-chip learning of the convolution neural network module utilizes the characteristic that the conductance of the memristor changes with the applied pulse to realize the synapticfunction, and the convolution kernel value or the synaptic weight value is stored in the memristor unit. The input module converts the input signal into the voltage signal required by the convolutional neural network module. The convolutional neural network module transforms the input voltage signal layer by layer and transmits the result to the output module to get the output of the network. Theweight updating module adjusts the conductance value of the memristor in the convolutional neural network module according to the result of the output module, and updates the convolution core value orsynaptic weight value of the network. The invention aims at realizing the on-chip learning of the convolution neural network, realizing the on-line processing of the data, and realizing the requirements of high speed, low power consumption and low hardware cost based on the high parallelism of the network.
Owner:HUAZHONG UNIV OF SCI & TECH

A hardware impulse neural network system

The invention discloses a hardware impulse neural network system, comprising: an input node layer and an unsupervised learning layer are connected through a synaptic connection unit in a neuron full connection mode; the unsupervised learning layer and the supervised learning layer are connected through another synaptic connection unit in a neuron full connection mode; the input node layer and theunsupervised learning layer are connected through a synaptic connection unit in a synaptic connection mode. The input node layer realizes the information input under different coding modes, the non-supervisory learning layer adopts the non-supervisory learning mode, and the supervisory learning layer adopts the supervisory learning mode. A synaptic connection unit is realized by an electronic synaptic device, so that that synaptic connection unit has a pulse time dependent plasticity STDP. The synaptic array unit receives as presynaptic pulses the stimulation signals from the neurons in the front layer and the postsynaptic pulses the action potential pulses excited by the neurons in the back layer. The time difference between the presynaptic pulses and the postsynaptic pulses determines the synaptic weight adjustment amount of the synaptic connection unit. The neural network system provided by the invention has a wide application value.
Owner:HUAZHONG UNIV OF SCI & TECH

Neuromorphic chip simulator

The invention proposes a neuromorphic chip simulator. The simulator comprises a plurality of processing cores and a plurality of routers. Each processing core comprises an input buffer area, a processing module, a dendritic calculation unit, a cell body calculation unit and an output buffer area. The dendritic calculation unit comprises a memory array and N simulated neurons; each simulated neuron comprises M axon inputs; and the dendritic calculation unit performs multiplication on the axon input of each position on each simulated neuron and a synaptic weight of a corresponding position, accumulates multiplication results, and combines accumulated results obtained by all the simulated neurons as output data of the dendritic calculation unit. The cell body calculation unit comprises N simulated neurons; each simulated neuron performs accumulation on a result obtained by multiplication and addition in the dendritic calculation unit and a numerical value accumulated by the previous simulated neuron; and pulses are generated when an accumulated numerical value exceeds a preset threshold. The output buffer area stores pulse-containing data packets. According to the simulator, the quality and efficiency of a neuromorphic chip design process can be ensured and designers can design neuromorphic chips with higher quality more quickly.
Owner:鄞州浙江清华长三角研究院创新中心

Unit, device and method for simulating biological neuronal synapsis

The invention discloses a unit, a device and a method for simulating biological neuronal synapsis on the basis of chalcogenide compounds. The unit comprises a first electrode layer, a function material layer and a second electrode layer, wherein the first electrode layer receives first pulse signals, and the second electrode layer receives second pulse signals. A device can change electric conductance simulation synapsis weight changes according to input signals. When the difference value between the frequency of the first pulse signals and the frequency of the second pulse signals is plus or minus, the electric conductance is changed , and the simulation of the pulse frequency dependent synaptic plasticity function of the biological neuronal synapsis is realized. When the signal difference peak value between the first pulse signals and the second pulse signals is plus or minus, the electric conductance is changed, and the simulation of the pulse time dependent synaptic plasticity function of the biological neuronal synapsis is realized. The unit, the device and the method have the advantages that the basic function of the biological neuronal synapsis can be realized on single inorganic devices, the basic device forming the artificial neural network can be provided, and the effects of integration degree improvement and power consumption reduction can be obtained.
Owner:HUAZHONG UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products