Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

62 results about "Synapsis" patented technology

Synapsis (also called syndesis) is the pairing of two homologous chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them. Synapsis takes place during prophase I of meiosis. When homologous chromosomes synapse, their ends are first attached to the nuclear envelope. These end-membrane complexes then migrate, assisted by the extranuclear cytoskeleton, until matching ends have been paired. Then the intervening regions of the chromosome are brought together, and may be connected by a protein-RNA complex called the synaptonemal complex. Autosomes undergo synapsis during meiosis, and are held together by a protein complex along the whole length of the chromosomes called the synaptonemal complex. Sex chromosomes also undergo synapsis; however, the synaptonemal protein complex that holds the homologous chromosomes together is only present at one end of each sex chromosome.

Solving the distal reward problem through linkage of stdp and dopamine signaling

In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
Owner:NEUROSCI RES FOUND

Unit, device and method for simulating biological neuronal synapsis

The invention discloses a unit, a device and a method for simulating biological neuronal synapsis on the basis of chalcogenide compounds. The unit comprises a first electrode layer, a function material layer and a second electrode layer, wherein the first electrode layer receives first pulse signals, and the second electrode layer receives second pulse signals. A device can change electric conductance simulation synapsis weight changes according to input signals. When the difference value between the frequency of the first pulse signals and the frequency of the second pulse signals is plus or minus, the electric conductance is changed , and the simulation of the pulse frequency dependent synaptic plasticity function of the biological neuronal synapsis is realized. When the signal difference peak value between the first pulse signals and the second pulse signals is plus or minus, the electric conductance is changed, and the simulation of the pulse time dependent synaptic plasticity function of the biological neuronal synapsis is realized. The unit, the device and the method have the advantages that the basic function of the biological neuronal synapsis can be realized on single inorganic devices, the basic device forming the artificial neural network can be provided, and the effects of integration degree improvement and power consumption reduction can be obtained.
Owner:HUAZHONG UNIV OF SCI & TECH

Chimeric antigen receptor, coding gene, expression vector and application thereof

The invention discloses a chimeric antigen receptor, a coding gene, an expression vector and application thereof. The chimeric antigen receptor comprises a single chain variable fragment, a CD8 alpha transmembrane domain, a CD3 zeta intracellular signal domain, a first co-stimulator ligand and a second co-stimulator ligand which are in successive tandem connection, wherein the CD8 alpha transmembrane domain is used for connecting the single chain variable fragment to a cell membrane, 2A short peptide is arranged between and in tandem connection with the CD3 zeta intracellular signal domain and the first co-stimulator ligand, and another 2A short peptide is arranged between and in tandem connection with the first co-stimulator ligand and the second co-stimulator ligand. According to the chimeric antigen receptor provided by the invention, the 2A short peptide is used to connect the chimeric antigen receptor with the two co-stimulator ligands, so the two co-stimulator ligands are expressed on the surface of an immune cell at the same time; once the chimeric antigen receptor specifically binds with antigen, the two co-stimulator ligands rapidly migrate to synapses formed by the combination of cells, so activity of immune cells is effectively enhanced.
Owner:SHANGHAI YAKE BIOTECHNOLOGY LTD

Di-substituted amides for enhancing glutamatergic synaptic responses

This invention relates to compounds, pharmaceutical compositions and methods for use in the prevention and treatment of cerebral insufficiency, including enhancement of receptor functioning in synapses in brain networks responsible for basic and higher order behaviors. These brain networks, which are involved in regulation of breathing, and cognitive abilities related to memory impairment, such as is observed in a variety of dementias, in imbalances in neuronal activity between different brain regions, as is suggested in disorders such as Parkinson's disease, schizophrenia, respiratory depression, sleep apneas, attention deficit hyperactivity disorder and affective or mood disorders, and in disorders wherein a deficiency in neurotrophic factors is implicated, as well as in disorders of respiration such as overdose of an alcohol, an opiate, an opioid, a barbiturate, an anesthetic, or a nerve toxin, or where the respiratory depression results form a medical condition such as central sleep apnea, stroke-induced central sleep apnea, obstructive sleep apnea, congenital hypoventilation syndrome, obesity hypoventilation syndrome, sudden infant death syndrome, Rett syndrome, spinal cord injury, traumatic brain injury, Cheney-Stokes respiration, Ondines curse, Prader-Willi's syndrome and drowning. In a particular aspect, the invention relates to compounds useful for treatment of such conditions, and methods of using these compounds for such treatment.
Owner:CORTEX PHARMA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products