Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

317 results about "Synapse" patented technology

In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Santiago Ramón y Cajal proposed that neurons are not continuous throughout the body, yet still communicate with each other,(like cabbages) an idea known as the neuron doctrine. The word "synapse" – from the Greek synapsis (συνάψις), meaning "conjunction", in turn from συνάπτεὶν (συν ("together") and ἅπτειν ("to fasten")) – was introduced in 1897 by the English neurophysiologist Charles Sherrington in Michael Foster's Textbook of Physiology. Sherrington struggled to find a good term that emphasized a union between two separate elements, and the actual term "synapse" was suggested by the English classical scholar Arthur Woollgar Verrall, a friend of Foster. Some authors generalize the concept of the synapse to include the communication from a neuron to any other cell type, such as to a motor cell, although such non-neuronal contacts may be referred to as junctions (a historically older term).

Method and apparatus for computer modeling of the interaction between and among cortical and subcortical areas in the human brain for the purpose of predicting the effect of drugs in psychiatric and cognitive diseases

Computer modeling of interactions between and among cortico and subcortical areas of the human brain, for example in a normal and a pathological state resembling schizophrenia which pathological state has inputs representing the effects of a drug(s), for the purpose of using the outputs to predict the effect of drugs in psychiatric and cognitive diseases on one or more clinical scales. Diseases that can be modeled include psychiatric disorders, such as schizophrenia, bipolar disorder, major depression, ADHD, autism, obsessive-compulsive disorder, substance abuse and cognitive deficits therein and neurological disorders such as Alzheimer's disease, Mild Cognitive impairment, Parkinson's disease, stroke, vascular dementia, Huntington's disease, epilepsy and Down syndrome. The computer model preferably uses the biological state of interactions between and among cortico and subcortical areas of the human brain, to define the biological processes related to the biological state of the generic synapse model, the striatum, Locus Coeruleus, Dorsal raphe, hippocampus, amygdala and cortex, as well as certain mathematical relationships related to interactions among biological variables associated with the biological processes.
Owner:CERTARA USA INC

Artificial synaptic device based on photoelectric coupling memristor and modulation method of artificial synapse device

The invention discloses an artificial synaptic device based on a photoelectric coupling memristor and a modulation method of the artificial synaptic device. The artificial synaptic device comprises an upper electrode, a lower electrode and a functional material layer, wherein the functional material layer is arranged between the upper electrode and the lower electrode, the upper electrode, the functional material layer and the lower electrode jointly form a sandwich structure, the functional material layer is made of a material having a photoelectric effect, the lower electrode is a transparent conductive electrode, an electrical signal is input through the upper electrode and the lower electrode, and an optical signal is input through the transparent conductive electrode. In the artificial synaptic device provided by the invention, light is introduced as a control signal of the other end except the electrical signal, two control ends of the artificial synapse device are expanded to three ends, the artificial synaptic device can generate resistance change under an external optical excitation signal by the additionally-arranged end, the artificial synaptic device can be configured to be in a plurality of resistance states correspondingly by selection and control of intensity, frequency and optical pulse time of the optical excitation signal, and various synaptic plasticity functions are correspondingly achieved.
Owner:HUAZHONG UNIV OF SCI & TECH

Weight adjustment circuit for variable-resistance synapses

InactiveCN102610274AImplement STDP weight adjustment functionSimple structureDigital storageSynapseNerve network
The invention discloses a weight adjustment circuit for variable-resistance synapses, which relates to the fields of integrated circuits and neural networks, and is used for carrying out weight adjustment on variable-resistance synapses. The circuit is composed of a weight enhancement adjustment subcircuit A (LTP (long term potentiation) adjustment) and a weight inhibition adjustment subcircuit B (LTD (long term depression) adjustment), wherein the two subcircuits respectively contain a charging pole, a discharging pole, a charge storage pole and an output pole. The core of the circuit is implemented by using an analog circuit mode, therefore, the number of transistors required by the circuit is greatly reduced; and meanwhile, through the setting of the bias voltage on a discharge tube in the discharge pole, the size of a weight adjustment time window can be adjusted conveniently. The circuit disclosed by the invention follows an STDP (spike timing dependent plasticity) learning rule, and LTP and LTD pulse outputs are generated according to the activities of nerve units at the two ends of the variable-resistance synapses so as to carry out corresponding weight adjustment on the variable-resistance synapses. The circuit disclosed by the invention is simple in structure, convenient in parameter adjustment, and suitable for applications, such as weight adjustment on electronic synapses of a large-scale neural network, and the like.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products