Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2063 results about "Similarity measure" patented technology

In statistics and related fields, a similarity measure or similarity function is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity measure exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects.

Auto playlist generation with multiple seed songs

The present invention relates to systems and / or methods that generate playlist(s) for a library or collection of media items via selecting a plurality of seed items, at least one of which is an undesirable seed item. Some of the seed items are desirable indicating that a user prefers additional media items similar to the desirable seed items and others are undesirable indicating that the user prefers additional media items dissimilar to the undesirable seed items. Additionally, the seed items can be weighted to establish a relative importance of the seed items. The invention compares media items in the collection with the seed items and determines which media items are added into the playlist by computation of similarity metrics or values. The playlist can be regenerated by adding desirable seed items to the playlist and removing media items from the playlist (e.g., undesirable seed items).
Owner:MICROSOFT TECH LICENSING LLC

System and method for an electronic product advisor

A system and method operates on a client device and acquires a suspect list of user products based on information derived from the client device. The system normalizes the list, and the user confirms the accuracy of the product list. The user product list is sent to a server where the user product list is compared to other lists using collaborative filtering techniques. The collaborative filtering techniques determine products of interest for the use and the level of interest of the user. The system computes a similarity measure based upon the number of similar products that match the user's product list and rankings provided by the user and others. Demographic and behavioral data may also be used in performing the comparison and the similarity measure. The system acquires editorial rankings of products from other users and provides a ranked list of recommended products based upon the editorial rankings.
Owner:CBS INTERACTIVE INC

Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications

A system that incorporates an interactive graphical user interface for visualizing clusters (categories) and segments (summarized clusters) of data. Specifically, the system automatically categorizes incoming case data into clusters, summarizes those clusters into segments, determines similarity measures for the segments, scores the selected segments through the similarity measures, and then forms and visually depicts hierarchical organizations of those selected clusters. The system also automatically and dynamically reduces, as necessary, a depth of the hierarchical organization, through elimination of unnecessary hierarchical levels and inter-nodal links, based on similarity measures of segments or segment groups. Attribute / value data that tends to meaningfully characterize each segment is also scored, rank ordered based on normalized scores, and then graphically displayed. The system permits a user to browse through the hierarchy, and, to readily comprehend segment inter-relationships, selectively expand and contract the displayed hierarchy, as desired, as well as to compare two selected segments or segment groups together and graphically display the results of that comparison. An alternative discriminant-based cluster scoring technique is also presented.
Owner:MICROSOFT TECH LICENSING LLC

Text-based searching of image data

A method and system are disclosed for conducting text-based searches of images using a visual signature associated with each image. A measure of string similarity between a query and an annotation associated with each entry in a first database is computed, and based upon the computed string similarity measures, a set of entries from the first database is selected. Each entry of the first database also includes an associated visual signature. At least one entry is then retrieved from a second database based upon a measure of visual similarity between a visual signature of each of the entries in the second database and the visual signatures of the entries in the selected set. Information corresponding to the retrieved entries from the second database is then generated.
Owner:CONDUENT BUSINESS SERVICES LLC

Systems and methods of generating control signals

Separating a source in a stereo signal having a left channel and a right channel includes transforming the signal into a short-time transform domain; computing a short-time similarity measure between the left channel and the right channel; classifying portions of the signals having similar panning coefficients according to the short-time similarity measure; segregating a selected one of the classified portions of the signals corresponding to the source; and reconstructing the source from the selected portions of the signals.
Owner:SIGNIFY NORTH AMERICA CORP

Techniques for similarity analysis and data enrichment using knowledge sources

The present disclosure relates to performing similarity metric analysis and data enrichment using knowledge sources. A data enrichment service can compare an input data set to reference data sets stored in a knowledge source to identify similarly related data. A similarity metric can be calculated corresponding to the semantic similarity of two or more datasets. The similarity metric can be used to identify datasets based on their metadata attributes and data values enabling easier indexing and high performance retrieval of data values. A input data set can labeled with a category based on the data set having the best match with the input data set. The similarity of an input data set with a data set provided by a knowledge source can be used to query a knowledge source to obtain additional information about the data set. The additional information can be used to provide recommendations to the user.
Owner:ORACLE INT CORP

Aural similarity measuring system for text

The aural similarity measuring system and method provides a measure of the aural similarity between a target text (10) and one or more reference texts (11). Both the target text (10) and the reference texts (11) are converted into a string of phonemes (15) and then one or other of the phoneme strings are adjusted (16) so that both are equal in length. The phoneme strings are compared (12) and a score generated representative of the degree of similarity of the two phoneme strings. Finally, where there is a plurality of reference texts the similarity scores for each of the reference texts are ranked (13). With this aural similarity measuring system the analysis is automated thereby reducing risks of errors and omissions. Moreover, the system provides an objective measure of aural similarity enabling consistency of comparison in results and reproducibility of results.
Owner:MONGOOSE VENTURES

Methods of imaging based on wavelet retrieval of scenes

Methods of imaging objects based on wavelet retrieval of scenes utilize wavelet transformation of plural defined regions of a query image. By increasing the granularity of the query image to greater than one region, accurate feature vectors are obtained that allow for robust extraction of corresponding regions from a database of target images. The methods further include the use of sliding windows to decompose the query and target images into regions, and the clustering of the regions utilizing a novel similarity metric that ensures robust image matching in low response times.
Owner:WSOU INVESTMENTS LLC +1

System and method for automatically discovering a hierarchy of concepts from a corpus of documents

The invention is a method, system and computer program for automatically discovering concepts from a corpus of documents and automatically generating a labeled concept hierarchy. The method involves extraction of signatures from the corpus of documents. The similarity between signatures is computed using a statistical measure. The frequency distribution of signatures is refined to alleviate any inaccuracy in the similarity measure. The signatures are also disambiguated to address the polysemy problem. The similarity measure is recomputed based on the refined frequency distribution and disambiguated signatures. The recomputed similarity measure reflects actual similarity between signatures. The recomputed similarity measure is then used for clustering related signatures. The signatures are clustered to generate concepts and concepts are arranged in a concept hierarchy. The concept hierarchy automatically generates query for a particular concept and retrieves relevant documents associated with the concept.
Owner:MICRO FOCUS LLC

Face image processing apparatus and method

A face image processing apparatus, includes: a face region detecting unit configured to detect a face feature point of a person from a plurality of images picked up by a plurality of imaging units respectively, to detect a face region; a face feature extracting unit configured to extract a face feature from an image of the face region detected by the face region detecting unit; a person recognizing unit configured to calculate a similarity measure based on a face feature of a specific person being previously registered and the face feature extracted by the face feature extracting unit to recognize the person; and an output apparatus which outputs a recognition result in the person recognizing unit.
Owner:KK TOSHIBA

Image Registration for Image-Guided Surgery

An image registration process for detecting a change in position of a surgical target, such as a tumor, within a patient is disclosed. A pre-operative model of the target and surrounding area is generated, then registered to live patient images to determine or confirm a location of the target during the course of surgery. Image registration is based on a non-iterative image processing logic that compares a similarity measure for a template of the target (generated from the pre-operative model) at one location within the live image to other locations within the live image.
Owner:ACCURAY

Clustering hypertext with applications to web searching

A method and structure of searching a database containing hypertext documents comprising searching the database using a query to produce a set of hypertext documents; and geometrically clustering the set of hypertext documents into various clusters using a toric k-means similarity measure such that documents within each cluster are similar to each other, wherein the clustering has a linear-time complexity in producing the set of hypertext documents, wherein the similarity measure comprises a weighted sum of maximized individual components of the set of hypertext documents, and wherein the clustering is based upon words contained in each hypertext document, out-links from each hypertext document, and in-links to each hypertext document.
Owner:IBM CORP

Image registration for image-guided surgery

An image registration process for detecting a change in position of a surgical target, such as a tumor, within a patient is disclosed. A pre-operative model of the target and surrounding area is generated, then registered to live patient images to determine or confirm a location of the target during the course of surgery. Image registration is based on a non-iterative image processing logic that compares a similarity measure for a template of the target (generated from the pre-operative model) at one location within the live image to other locations within the live image.
Owner:ACCURAY

System and method for learning-based 2D/3D rigid registration for image-guided surgery using Jensen-Shannon divergence

InactiveUS7940999B2Improve accuracyRobust and accurate registrationImage enhancementImage analysisLearning basedJensen–Shannon divergence
A method of registering 3-dimensional digitized images to 2-dimensional digitized images during a medical procedure includes providing a pair of correctly-registered training images L={lr, lf} and their joint intensity distribution pl(ir, if), wherein ir and if are reference and floating images, respectively, providing a pair of observed images O={or, of} and their joint intensity distribution po(ir, if), mapping a marginal intensity distribution of the observed pair O={or, of} to a marginal intensity distribution of the training pair L={lr, lf}, and estimating a set of parameters T that registers image of to image or by maximizing a weighted sum of a Jensen-Shannon divergence (JSD) of a joint intensity distribution of the observed pair and a joint intensity distribution of the training pair and a similarity measure between the observed images.
Owner:SIEMENS HEALTHCARE GMBH

System and method for computing a measure of similarity between documents

A measure of similarity between two documents is computed. In computing the measure of similarity, a first list of rated keywords extracted from the first document and a second list of rated keywords extracted from the second document are received. The first and second lists of keywords are used to determine whether the first document forms part of the second document using a first computed percentage indicating what percentage of keyword ratings in the first list also exist in the second list. A second percentage is computed that indicates what percentage of keyword ratings along with a set of their neighboring keyword ratings in the first list that also exist in the second list when the first percentage indicates that the first document is included in the second document. The first percentage is used to specify the measure of similarity when the second percentage is greater than the first percentage.
Owner:XEROX CORP

Application-specific method and apparatus for assessing similarity between two data objects

The similarity between two data objects of the same type (e.g., two resumes, two job descriptions, etc.) is determined using predictive modeling. A basic assumption is that training datasets are available containing compatibility measures between objects of the first type and data objects of a second type, but that training datasets measuring similarity between objects of the first type are not. A first predictive model is trained to assess compatibility between data objects of a first type and data objects of a second type. Then, in one scenario, pairs of objects of the first type are compared for similarity by running them through the first predictive model as if one object of the pair is an object of the first type and the other object of the pair is an object of the second type. Alternatively, for each object in a set of objects of the first type, the first predictive model is used to create a respective vector of compatibility scores against a fixed set of objects of the second type; these various vectors are then used to derive measures of similarity between pairs of objects of the first type, from which a second predictive model is trained, and the second predictive model is then used to assess the similarity of pairs of objects of the first type.
Owner:BURNING GLASS TECH

Apparatus and method for determining measure of similarity between images

ActiveUS7187792B2Robust and accurate and efficientImage enhancementImage analysisX ray imageDigital image
A method and system is presented in image-guided radiosurgery for determining the measure of similarity of two digital images, for example a 2D x-ray image and a 2D DRR synthesized from 3D scan data. A two-dimensional array of pixel values of a difference image is formed by subtracting each pixel value of the second image from the corresponding pixel value of the first image. The pattern intensity function is constructed by taking the summation of asymptotic functions of the gradients of the difference image. The neighborhood R is defined so as to allow the gradients of the difference image to be considered in at least four directions.
Owner:ACCURAY

Method and apparatus for filtering email spam based on similarity measures

A method and system for filtering email spam based on similarity measures are described. In one embodiment, the method includes receiving an incoming email message, generating data characterizing the incoming email message based on the content of the incoming email message, and comparing the generated data with a set of data characterizing spam messages. The method further includes determining whether a resemblance between the data characterizing the incoming email message and any data item from the set of data characterizing spam messages exceeds a threshold.
Owner:SYMANTEC CORP

Diagnosis Support System Providing Guidance to a User by Automated Retrieval of Similar Cancer Images with User Feedback

The present invention is a diagnosis support system providing automated guidance to a user by automated retrieval of similar disease images and user feedback. High resolution standardized labeled and unlabeled, annotated and non-annotated images of diseased tissue in a database are clustered, preferably with expert feedback. An image retrieval application automatically computes image signatures for a query image and a representative image from each cluster, by segmenting the images into regions and extracting image features in the regions to produce feature vectors, and then comparing the feature vectors using a similarity measure. Preferably the features of the image signatures are extended beyond shape, color and texture of regions, by features specific to the disease. Optionally, the most discriminative features are used in creating the image signatures. A list of the most similar images is returned in response to a query. Keyword query is also supported.
Owner:STI MEDICAL SYST

Methods and apparatus related to pruning for concatenative text-to-speech synthesis

The present invention provides, among other things, automatic identification of near-redundant units in a large TTS voice table, identifying which units are distinctive enough to keep and which units are sufficiently redundant to discard. According to an aspect of the invention, pruning is treated as a clustering problem in a suitable feature space. All instances of a given unit (e.g. word or characters expressed as Unicode strings) are mapped onto the feature space, and cluster units in that space using a suitable similarity measure. Since all units in a given cluster are, by construction, closely related from the point of view of the measure used, they are suitably redundant and can be replaced by a single instance. The disclosed method can detect near-redundancy in TTS units in a completely unsupervised manner, based on an original feature extraction and clustering strategy. Each unit can be processed in parallel, and the algorithm is totally scalable, with a pruning factor determinable by a user through the near-redundancy criterion. In an exemplary implementation, a matrix-style modal analysis via Singular Value Decomposition (SVD) is performed on the matrix of the observed instances for the given word unit, resulting in each row of the matrix associated with a feature vector, which can then be clustered using an appropriate closeness measure. Pruning results by mapping each instance to the centroid of its cluster.
Owner:APPLE INC

Method and apparatus for detecting near duplicate videos using perceptual video signatures

Methods and apparatus for detection and identification of duplicate or near-duplicate videos using a perceptual video signature are disclosed. The disclosed apparatus and methods (i) extract perceptual video features, (ii) identify unique and distinguishing perceptual features to generate a perceptual video signature, (iii) compute a perceptual video similarity measure based on the video edit distance, and (iv) search and detect duplicate and near-duplicate videos. A complete framework to detect unauthorized copying of videos on the Internet using the disclosed perceptual video signature is disclosed.
Owner:GOOGLE LLC

Multimedia archive description scheme

A multimedia archive description scheme is provided for characterizing a multimedia archive having records and associated record descriptions. The multimedia archive description scheme provides a data structure which relates records by similarity measures. The principle data structure in the multimedia archive description scheme is a cluster. A cluster includes one or more attributes of the records in the archive and can include one or more cluster relationships. Cluster attributes can include feature space attributes, semantic attributes, media attributes and meta attributes of the records in the archive. The cluster relationships can relate records to clusters or clusters to clusters. Cluster relationships can include feature space (syntactic) relationships, semantic relationships, media relationships and meta relationships. The multimedia archive description scheme provides an efficient form for describing a collection of records.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK +1

Comparing audio using characterizations based on auditory events

A method for determining if one audio signal is derived from another audio signal or if two audio signals are derived from the same audio signal compares reduced-information characterizations of said audio signals, wherein said characterizations are based on auditory scene analysis. The comparison removes from the characterisations or minimizes in the characterisations the effect of temporal shift or delay on the audio signals (5-1), calculates a measure of similarity (5-2), and compares the measure of similarity against a threshold. In one alternative, the effect of temporal shift or delay is removed or minimized by cross-correlating the two characterizations. In another alternative, the effect of temporal shift or delay is removed or minimized by transforming the characterizations into a domain that is independent of temporal delay effects, such as the frequency domain. In both cases, a measure of similarity is calculated by calculating a coefficient of correlation.
Owner:DOLBY LAB LICENSING CORP

Image processing method for direction dependent low pass filtering

InactiveUS7016549B1Without losing fine structure of imageTelevision system detailsImage enhancementImaging processingJaggies
First similarity values along at least four directions are ascertained within a local area containing a target pixel and weighted averaging is performed by adding the pixel values of pixels around the target pixel value to the pixel value of the target pixel, adding weight along a direction having a small first similarity value (along a direction manifesting a high degree of similarity). By incorporating the pixel value level differences among a plurality of pixels on adjacent lines extending adjacent to the target pixel into the first similarity values, it becomes possible to effectively remove jaggies that are difficult to eliminate in the prior art. Furthermore, by making a judgment on degrees of similarity by incorporating color information such as characteristics differences among different color pixels, a more accurate judgment can be made with regard to the image structure to enable very accurate direction-dependent low-pass filtering.
Owner:NIKON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products