Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

180results about How to "Fast computer" patented technology

Image Reconstruction Methods Based on Block Circulant System Matrices

An iterative image reconstruction method used with an imaging system that generates projection data, the method comprises: collecting the projection data; choosing a polar or cylindrical image definition comprising a polar or cylindrical grid representation and a number of basis functions positioned according to the polar or cylindrical grid so that the number of basis functions at different radius positions of the polar or cylindrical image grid is a factor of a number of in-plane symmetries between lines of response along which the projection data are measured by the imaging system; obtaining a system probability matrix that relates each of the projection data to each basis function of the polar or cylindrical image definition; restructuring the system probability matrix into a block circulant matrix and converting the system probability matrix in the Fourier domain; storing the projection data into a measurement data vector; providing an initial polar or cylindrical image estimate; for each iteration; recalculating the polar or cylindrical image estimate according to an iterative solver based on forward and back projection operations with the system probability matrix in the Fourier domain; and converting the polar or cylindrical image estimate into a Cartesian image representation to thereby obtain a reconstructed image.
Owner:SOCPRA SCI SANTE & HUMAINES S E C

Non-linear dynamic predictive device

A non-linear dynamic predictive device (60) is disclosed which operates either in a configuration mode or in one of three runtime modes: prediction mode, horizon mode, or reverse horizon mode. An external device controller (50) sets the mode and determines the data source and the frequency of data. In prediction mode, the input data are such as might be received from a distributed control system (DCS) (10) as found in a manufacturing process; the device controller ensures that a contiguous stream of data from the DCS is provided to the predictive device at a synchronous discrete base sample time. In prediction mode, the device controller operates the predictive device once per base sample time and receives the output from the predictive device through path (14). In horizon mode and reverse horizon mode, the device controller operates the predictive device additionally many times during base sample time interval. In horizon mode, additional data is provided through path (52). In reverse horizon mode data is passed in a reverse direction through the device, utilizing information stored during horizon mode, and returned to the device controller through path (66). In the forward modes, the data are passed to a series of preprocessing units (20) which convert each input variable (18) from engineering units to normalized units. Each preprocessing unit feeds a delay unit (22) that time-aligns the input to take into account dead time effects such as pipeline transport delay. The output of each delay unit is passed to a dynamic filter unit (24). Each dynamic filter unit internally utilizes one or more feedback paths that are essential for representing the dynamic information in the process. The filter units themselves are configured into loosely coupled subfilters which are automatically set up during the configuration mode and allow the capability of practical operator override of the automatic configuration settings. The outputs (28) of the dynamic filter units are passed to a non-linear analyzer (26) which outputs a value in normalized units. The output of the analyzer is passed to a post-processing unit (32) that converts the output to engineering units. This output represents a prediction of the output of the modeled process. In reverse horizon mode, a value of 1 is presented at the output of the predictive device and data is passed through the device in a reverse flow to produce a set of outputs (64) at the input of the predictive device. These are returned to the device controller through path (66). The purpose of the reverse horizon mode is to provide essential information for process control and optimization. The precise operation of the predictive device is configured by a set of parameters. that are determined during the configuration mode and stored in a storage device (30). The configuration mode makes use of one or more files of training data (48) collected from the DCS during standard operation of the process, or through structured plant testing. The predictive device is trained in four phases (40, 42, 44, and 46) correspo
Owner:ASPENTECH CORP

Non-linear dynamic predictive device

A non-linear dynamic predictive device (60) is disclosed which operates either in a configuration mode or in one of three runtime modes: prediction mode, horizon mode, or reverse horizon mode. An external device controller (50) sets the mode and determines the data source and the frequency of data. In the forward modes (prediction and horizon), the data are passed to a series of preprocessing units (20) which convert each input variable (18) from engineering units to normalized units. Each preprocessing unit feeds a delay unit (22) that time-aligns the input to take into account dead time effects. The output of each delay unit is passed to a dynamic filter unit (24). Each dynamic filter unit internally utilizes one or more feedback paths that provide representations of the dynamic information in the process. The outputs (28) of the dynamic filter units are passed to a non-linear approximator (26) which outputs a value in normalized units. The output of the approximator is passed to a post-processing unit (32) that converts the output to engineering units. This output represents a prediction of the output of the modeled process. In reverse horizon mode, data is passed through the device in a reverse flow to produce a set of outputs (64) at the input of the predictive device. These are returned to the device controller through path (66). The purpose of the reverse horizon mode is to provide information for process control and optimization. The predictive device approximates a large class of non-linear dynamic processes. The structure of the predictive device allows it to be incorporated into a practical multivariable non-linear Model Predictive Control scheme, or used to estimate process properties.
Owner:ASPENTECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products