Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1456 results about "Hide markov model" patented technology

Distributed real time speech recognition system

InactiveUS20050080625A1Facilitates query recognitionAccurate best responseNatural language translationData processing applicationsFull text searchTime system
A real-time system incorporating speech recognition and linguistic processing for recognizing a spoken query by a user and distributed between client and server, is disclosed. The system accepts user's queries in the form of speech at the client where minimal processing extracts a sufficient number of acoustic speech vectors representing the utterance. These vectors are sent via a communications channel to the server where additional acoustic vectors are derived. Using Hidden Markov Models (HMMs), and appropriate grammars and dictionaries conditioned by the selections made by the user, the speech representing the user's query is fully decoded into text (or some other suitable form) at the server. This text corresponding to the user's query is then simultaneously sent to a natural language engine and a database processor where optimized SQL statements are constructed for a full-text search from a database for a recordset of several stored questions that best matches the user's query. Further processing in the natural language engine narrows the search to a single stored question. The answer corresponding to this single stored question is next retrieved from the file path and sent to the client in compressed form. At the client, the answer to the user's query is articulated to the user using a text-to-speech engine in his or her native natural language. The system requires no training and can operate in several natural languages.
Owner:NUANCE COMM INC

Medical device for predicting a user's future glycemic state

A medical device for predicting a user's future glycemic state includes a memory module, a processor module and a user alert module. The memory module is configured to receive and store a plurality of glucose concentrations as a function of time that were generated by a user's use of a continuous glucose monitor. The processor module is configured to derive first and second glucose prediction equations that are fits to the plurality of glucose concentrations stored in the memory module with the fits being based on first and second mathematical models, respectively. The processor module is also configured to calculate first and second predicted glucose concentrations at a future time using the first and second glucose prediction equations, respectively, and to also calculate an average predicted glucose concentration and a merit index based on the first and second predicted glucose calculations. The processor module is further configured to input the plurality of glucose concentrations as a function of time, the average predicted glucose concentration and the merit index into a trained model (e.g., a Hidden Markov Model) that outputs a set of glucose concentration probabilities for the future time and to then predict the user's future glycemic state based on the set of glucose concentration probabilities. The user alert module is configured to alert the user in a manner dependent on the predicted user's future glycemic state.
Owner:LIFESCAN IP HLDG LLC

Medical device for predicting a user's future glycemic state

A medical device for predicting a user's future glycemic state includes a memory module, a processor module and a user alert module. The memory module is configured to receive and store a plurality of glucose concentrations as a function of time that were generated by a user's use of a continuous glucose monitor. The processor module is configured to derive first and second glucose prediction equations that are fits to the plurality of glucose concentrations stored in the memory module with the fits being based on first and second mathematical models, respectively. The processor module is also configured to calculate first and second predicted glucose concentrations at a future time using the first and second glucose prediction equations, respectively, and to also calculate an average predicted glucose concentration and a merit index based on the first and second predicted glucose calculations. The processor module is further configured to input the plurality of glucose concentrations as a function of time, the average predicted glucose concentration and the merit index into a trained model (e.g., a Hidden Markov Model) that outputs a set of glucose concentration probabilities for the future time and to then predict the user's future glycemic state based on the set of glucose concentration probabilities. The user alert module is configured to alert the user in a manner dependent on the predicted user's future glycemic state.
Owner:LIFESCAN IP HLDG LLC

Personalized Monitoring and Healthcare Information Management Using Physiological Basis Functions

Analysis of individual's serial changes, also referred to as the physiological, pathophysiological, medical or health dynamics, is the backbone of medical diagnosis, monitoring and patient healthcare management. However, such an analysis is complicated by enormous intra-individual and inter-individual variability. To address this problem, a novel serial-analysis method and system based on the concept of personalized basis functions (PBFs) is disclosed. Due to more accurate reference information provided by the PBFs, individual's changes associated with specific physiological activity or a sequence, transition or combination of activities (for example, a transition from sleep to wakefulness and transition from rest to exercise) can be monitored more accurately. Hence, subtle but clinically important changes can be detected earlier than using other methods. A library of individual's PBFs and their transition probabilities (which can be described by Hidden Markov Models) can completely describe individual's physiological dynamics. The system can be adapted for healthcare information management, diagnosis, medical decision support, treatment and side-effect control. It can also be adapted for guiding health, fitness and wellness training, subject identification and more efficient management of clinical trials.
Owner:SHUSTERMAN VLADIMIR

Video frequency behaviors recognition method based on track sequence analysis and rule induction

The invention discloses a method for identifying the video action based on trajectory sequence analysis and rule induction, which solves the problems of large labor intensity. The method of the invention divides a complete trajectory in a scene into a plurality of trajectory section with basic meaning, and obtains a plurality of basic movement modes as atomic events through the trajectory clustering; meanwhile, a hidden Markov model is utilized for establishing a model to obtain the event rule contained in the trajectory sequence by inducting the algorithm based on the minimum description length and based on the event rule, an expanded grammar analyzer is used for identifying an interested event. The invention provides a complete video action identification frame and also a multi-layer rule induction strategy by taking the space-time attribute, which significantly improves the effectiveness of the rule learning and promotes the application of the pattern recognition in the identification of the video action. The method of the invention can be applied to the intelligent video surveillance and automatic analysis of movements of automobiles or pedestrians under the current monitored scene so as to lead a computer to assist people or substitute people to complete monitor tasks.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products